Reflection Seismic Processing

- Objective transform redundant reflection seismic records in the *time domain* into an interpretable *depth image*.
 - Data reduction and editing;
 - Transformation into conveniently computermanageable form;
 - Removal of bad records;
 - Gathering;
 - CMP sorting;
 - Filtering in time and space;
 - Attenuation of noise;
 - Imaging
 - Final velocity and reflectivity image.

GEOL 335.3 A seismic line processed by different contractors

Seismic Processing Systems

- Usually geared to a particular type of application
 - Mostly CMP reflection processing;
 - Land or marine, 2D or 3D.
- Commercial:
 - ProMAX (Landmark);
 - Omega (Western Geophysical, marine);
 - Focus (Paradigm);
 - Amoco and almost every other company have their own...
 - Vista (Seismic Image Soft.).
- Open-source/Universities:
 - Stanford Exploration Project;
 - Seismic UNIX (Colorado School of Mines);
 - FreeUSP (Amoco);
 - SIOSEIS (Scrippts, marine, not free!);
 - I. Morozov's very own:

http://seisweb.usask.ca/igeos

Seismic data formats SEG-Y

- Many seismic data formats are similar, and include:
 - Text file header (comments for the user, line description);
 - Binary file header (number of traces, other vital formatting information);
 - 'Traces', each including:
 - Binary trace header (channel number, coordinate, offset, statics, mute times, filter parameters, etc.).
 Some formats allow user-defined trace headers.
 - > Trace sample values (integer or floating-point).
 - SEG-Y format (adopted by SEG as the standard for data exchange):
 - Text file header of 3200 bytes (40 80-character lines);
 - Binary file header of 400 bytes;
 - Each trace includes:
 - > 240-byte headers, fixed predefined format.
 - Samples in any of the 2- or 4-byte formats (usually stored as 4-byte IBM REAL).

A moderate 2-D seismic line with 800 shots recorded on 96 channels at 1500 samples per trace takes about 500 Mb of storage in SEG-Y format (verify this!)

Processing Hardware Terabytes and Teraflops

Memory

- $\bullet \quad 1 \text{ byte} = 8 \text{ bits};$
- 1 kbyte (kilo-) = 1024 bytes;
- 1 Mbyte (mega-) = 1024^2 bytes;
- 1 Gbyte(giga-) = 1024^3 bytes;
- 1 Tbyte(tera-) = 1024^4 bytes.
- Flop
 - Number of floating-point operations per second ('+', '-', '*', '/');
 - Sqrt() takes ~10-15 operations;
 - Multiples:
 - > 1 Mflop = 10^6 flop;
 - > 1 Gflop = 10^9 flop;
 - > 1 Tflop (tera-) = 10^{12} flop;
 - > 1 Pflop (penta-) = 10^{15} flop;
 - > 1 Eflop (exa-) = 10^{18} flop.
- For top performers, check: http://www.netlib.org/benchmark/top500/top500.list.html
 - 3-D seismic processing routinely utilizes *massively* parallel systems (*e.g.*, ~5000 processors at Veritas DGC in Houston and 2000 in Calgary)

CMP Processing Sequence

- 1) Demultiplex, Vibroseis correlation, Gain recovery
 - Conversion from file formats produced by field data loggers into processing-oriented formats
 - > SEG-Y, SEG-2.
 - ProMax, Focus, Omega, SU, Vista, etc., internal formats.
 - These days, may not be required (done in the field).
- 2) Field Geometry
 - Assignment of source-receiver coordinates, offsets, etc. in the *trace headers*.
- 3) Edit
 - Removal of bad traces (noisy channels, poorly planted geophones, channels contaminated by power line noise, etc.).

- 4) First arrival picking
 - May be semi-automatic or manual;
 - Required for generation of *refraction statics*; models and for designing the *mutes*.

5) Elevation statics

- Based on geometry information, compensates the travel-time variations caused by variations in source/receiver elevations.
- Transforms the records as if recorded at a common horizontal *datum* surface.
- 6) Refraction statics
 - Builds a model for the shallow, low-velocity subsurface;
 - Compensates the travel-time variations caused by the shallow velocities.
- 4) 'Top', 'bottom', and 'surgical' *mute*
 - Eliminates (sets amplitude=0) the time intervals where strong non-reflection energy is present:
 - First arrivals, ground roll, airwave.

8) Gain recovery

- Compensates geometrical spreading;
- Based on a simple heuristic relation.

9) Trace balance

- Equalizes the variations in amplitudes caused by differences in *coupling*;
- In true-amplitude processing, replaced with 'surface-consistent deconvolution'.
- 10) Deconvolution
 - Compresses the wavelet in time, attenuates reverberations.
- 11) Gather, CMP sort
 - In modern processing systems (ProMax, Omega, Vista) done by using *trace lookup spreadsheets* rather than by creating additional copies of the dataset.

12) Velocity analysis

For each of the CMP gathers, determines the optimal *stacking velocity*.

13) Dip Moveout (DMO) correction

Transforms the records so that the subsequent NMO+stack work well even in the presence of dipping reflectors.

14) Normal Moveout (NMO) correction

- Removes the effects of source-receiver separation from reflection records;
- Transforms the records as if recorded at normal incidence.

15) Residual statics

Removes the remaining small travel-time variations caused by inaccurate statics or velocity model

- 16) Steps 12-15 above are usually <u>iterated</u> 3-5 times to produce accurate *velocity* and *residual statics* models.
 - Success of velocity analysis depends on the quality of DMO/NMO and residual statics, and *vice versa*.
- 16) Stack
 - Produces a zero-offset section;
 - Utilizes CMP redundancy to increase the Signal/Noise ratio.

17) Migration

- Transforms the zero-offset *time* section into a depth image;
- Establishes correct extents and dips of the reflectors.

18) Frequency filtering and display

- Attenuates noise
 - Provides best display for interpretation

Example: CMP gathers

Example: CMP gathers after NMO correction

Example: CMP gathers after NMO+DMO corrections

Example: Velocity analysis

Example: NMO(+DMO) stack

Example: Migrated stack

