Ground-Penetrating Radar (also Ground-Probing Radar, GPR)

- Similarities and dissimilarities to seismic
- Case histories
- Reading:
 - Reynolds, Chapter 12

GPR Principles

- Uses 30- 1000 MHz electromagnetic waves emitted in short "chirps" for probing
 - Two dipole antennas as source and receiver;
 - Automatically stacks series of pulses for noise reduction.
- Directly produces a zero-offset section;
 - Optionally, can also be used to produced a constantoffset or walkaway sections.
- Sensitive to dielectric susceptibility (ε) and conductivity (σ).

Propagation and reflection of radio waves

• Velocity:
$$c = \frac{c_0}{\sqrt{\epsilon \mu}} \approx \frac{c_0}{\sqrt{\epsilon}}$$
.

- the fastest for the 'air' wave;
- generally decreases with depth.

Impedance:
$$Z = \sqrt{\frac{\mu}{\epsilon}} \approx \sqrt{\frac{1}{\epsilon}} [Ohms].$$

• Amplitude reflection coefficient:

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$
.

- Two-way travel times:
 - → Air: 6 ns/m;
 - Unsaturated sand: 12-18 ns/m;
 - ◆ Saturated sand: 18-27 ns/m.

Antenna directivity patterns

- GPR antenna focuses energy in a beam directed downward;
- Receiver antenna has a similar sensitivity pattern.

Depth penetration of GPR waves

Relation to Reflection Seismics

Similarities:

- Processing procedures (filtering, stacking, migration);
- ◆ Appearance of the zero-offset section;
- Resolution-frequency relationships;
- Interpretation techniques.

Differences:

- Nanoseconds (ns) instead of milliseconds (ms);
 - > Sub-meter vertical resolution and ~10-100 m penetration.
- Electrical properties instead of acoustic impedance;
 - Very sensitive to buried metallic objects.
- Velocities decrease with depth
 - Rays bend toward the vertical;
 - Free-air arrival is the fastest;
 - Faster attenuation;
 - > Large velocity contrasts.
- Sub-meter resolution.
- Thus, GPR is a a valuable complementary technique to shallow seismics.

GPR operation

GPR acquisition modes

Zero-offset (collocated source and receiver antennas)

- Most typical in GPR work;
- Inexpensive 3-D surveys.

Wide-angle or expanding CMP surveys to measure velocities.

GPR applications

Geological:

- Detection of natural cavities and fissures
- Subsidence mapping
- Mapping sand body geometry
- Mapping of superficial deposits
- Soil stratigraphy mapping
- Glacial geological investigations
- Mineral exploration and resource evaluation
- Peat thickness mapping and resource evaluation Permafrost investigations
- Location of ice wedges
- Fracture mapping in rock salt
- Location of faults, dykes, coal seams, etc.
- Geological structure mapping
- ◆ Lake and riverbed sediment mapping

GPR applications (cont)

Environmental:

- Contaminant plume mapping
- Mapping and monitoring pollutants within groundwater Landfill investigations
- Location of buried fuel tanks and oil drums
- Location of gas leaks
- Groundwater investigations

• Glaciological:

- Ice thickness mapping
- Determination of internal glacier structures
- Ice movement studies
- Detection of concealed surface and basal glacier crevasses
 Mapping water conduits within glaciers
- Determination of thickness and type of sea and lake ice Subglacial mass balance determination
- Snow stratigraphy

GPR applications (cont)

- Engineering and construction:
 - Road pavement analysis
 - Void detection
 - Location of reinforcement (rebars) in concrete
 - Location of public utilities (pipes, cables, etc.)
 - Testing integrity of building materials
 - Concrete testing
- Archaeology:
 - Location of buried structures
 - Detection and mapping of Roman Roads, etc. Location of post-holes, etc.
 - Pre-excavation mapping
 - Detection of voids (crypts, etc.)
 - Location of graves
- Forensic science:
 - ◆ Location of buried targets (e.g. bodies and bullion)

GPR equipment

PulseEKKO RockNoggin

PulseEKKO 100

GPR applications

Case history: Engineering

Detecting tunnels (Sweden)

- 50-Mhz GPR locates two tunnels at 11 meters depth
- GPR locates a cable and culvert
- GPR defines overburden thickness

Case history: Glaciology

- Measuring snow depth on Storglacierien, a small polythermal glacier in northern Sweden.
- Snow thickness were estimates by identifying summer ice surfaces

 $From\ http://www.terraplus.com/gpr_case_study.htm$

Case history:

3D characterisation of a clastic reservoir analog (Szerbak et al., 1999)

- Mapping outcrop;
- 3-D GPR cube adjacent to the outcrop;
- Correlation with well data;
- Geostatistics of permeability/velocity/depth relationships.
- Inversion for permeabilty.

Case history (cont 0): location map

Coyote basin, UT

Case history (cont. 1)

(Szerbak et al., 1999)

3D radargram

Case history (cont. 2)

(Szerbak et al., 1999)

• Calibrating the GPR image using boreholes

Case history (cont. 3)

(Szerbak et al., 1999)

Correlation with clay and permeability data

Case history (cont. 4)

(Szerbak et al., 1999)

• Velocity distribution correlation functions.

Case history (cont. 5)

(Szerbak et al., 1999)

Statistical relationships between permeability, clay content, and *velocity*.

Case history (cont. 6)

(Szerbak et al., 1999)

Final reflectivity, velocity, and permeability models

Case history (cont. 7)

(Szerbak et al., 1999)

3D permeability cube

