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Elasticity and 
Seismic Waves

Macroscopic theory
Rock as 'elastic continuum'

Elastic body is deformed in response to stress
Two types of deformation: Change in volume 
and shape

Equations of motion
Wave equations
Plane and spherical waves

Reading:
➢ Shearer, Sections 2, 3
➢ Telford et al., Section 4.2.
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Stress

Consider the interior of a deformed 
body:

At point P, force dF acts 
on any infinitesimal area 
dS

Stress, with respect to 
direction n, is a vector:

lim(dF/dS) (as dS → 0)

Stress is measured in [Newton/m2], or 
Pascal

   Note that this is a unit of pressure
dF can be decomposed in two 
components relative to n:

Parallel (normal stress)
Tangential (shear stress)



GEOL 335.3

Stress

Stress, in general, is a tensor:
It is described in terms of 3 force 
components acting across each of 3 
mutually orthogonal surfaces
6 independent parameters
Force dF/dS depends on the orientation n, 
but stress does not
Stress is best described by a matrix:

In a continuous medium, stress depends on 
(x,y,z,t) and thus it is a field
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Forces acting 
on a small cube 

Consider a small cube within the elastic 
body. Assume dimensions of the cube 
equal '1'
Both the forces and torque acting on the 
cube from the outside are balanced:

In consequence, the stress tensor is 
symmetric: σij = σji

Just 6 independent parameters out of 9
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Strain 
within a deformed body

Strain is a measure of deformation, i.e., 
variation of relative displacement as 
associated with a particular direction 
within the body
It is, therefore, also a tensor

Represented by a matrix
Like stress, it is decomposed into normal 
and shear components

Seismic waves yield strains of 10-10-10-6

So we rely on infinitesimal strain theory 



GEOL 335.3

Elementary Strain

When a body is deformed, displacements (U) of 
its points are dependent on (x,y,z), and consist 
of:

Translation (blue arrows below)
Deformation (red arrows) 

Elementary strain is simply e ij=
∂U i

∂ x j
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Strain Components

However, anti-symmetric combinations of  eij 
above yield simple rotations of the body 
without changing its shape:

e.g.,                    yields rotation about the 'y' axis.
So, the case of                 is called pure shear (no 
rotation)

To characterize deformation, only the 
symmetric component of the elementary strain 
is used:

1
2

∂ U z

∂ x
−

∂U x

∂ z


∂U z

∂ x
=

∂ U x

∂ z
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Dilatational Strain 
(relative volume change 

during deformation)

Original volume: V=δxδyδz

Deformed volume: V+δV=(1+εxx)(1+ε
yy

)
(1+ε

zz
)δxδyδz

Dilatational strain:

Note that (as expected) shearing strain does 
not change the volume

=
 V
V

=1 xx1 yy1 zz −1≈ xx yy zz

=ii=∂i U i= ∇ U=div U
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Hooke's Law
(general)

Describes the stress developed in a deformed 
body:

F = -kx for an ordinary spring (1-D)
σ ~ ε (in some sense) for a 'linear', 'elastic' 

3-D solid. This is what it means:

For a general (anisotropic) medium, there are 
36 coefficients of proportionality between six 
independent σ

ij
 and six ε

ij
.



GEOL 335.3

Hooke's Law
(isotropic medium)

For  isotropic medium, the strain/stress 
relation is described by just two 
constants:

σ
ij
 = λ∆ + 2µε

ij
 for normal strain/stress 

(i=j, where i,j = x,y,z)

σ
ij
 = 2µε

ij
 for shear components (i≠j)

λ  and µ are called the Lamé 
constants.
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Four Elastic Moduli

Depending on boundary conditions (i.e., 
experimental setup) different combinations 
of λ  and µ may be convenient. These 
combinations are called elastic constants, 
or moduli:

Young's modulus and Poisson's ratio:
Consider a cylindrical sample uniformly 
squeezed along axis X:

Often denoted σ.
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Four Elastic Moduli

Bulk modulus, K
Consider a cube subjected to hydrostatic pressure 

Finally, the constant µ complements K in 
describing the shear rigidity of the medium, 
and thus it is also called 'rigidity modulus'

For rocks:

Generally, 10 Gpa < µ < K < E < 200 Gpa

 0 < ν < ½ always; for rocks, 0.05 < ν < 0.45, for 
most “hard rocks”, ν is near 0.25.

For fluids,  ν= ½ and µ = 0 (no shear resistance)
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Strain/Stress 
Energy Density

Mechanical work is required to deform an 
elastic body; as a result, elastic energy is 
accumulated in the strain/stress field

When released, this energy gives rise to 
earthquakes and seismic waves

For a loaded spring (1-D elastic body),          
E= ½kx2=½Fx

Similarly, for a deformed elastic medium, 
energy density is:

Energy density (per unit volume) is thus 
measured in: [ Newton⋅m

m3 ]=[ Newton
m2 ]
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Inhomogeneous Stress

If stress is 
inhomogeneous 
(variable in 
space), its 
derivatives result 
in a net force 
acting on an 
infinitesimal 
volume:

F i=∂ ix

∂ x


∂ iy

∂ y


∂ iz

∂ z  VThus, for i = x, y, z:

F x=[ xx
∂ xx

∂ x
 x − xx] y  z

[ xy
∂ xy

∂ y
 y− xy] x  z

[ xz
∂ xz

∂ z
 z − xz] x  y=∂ xx

∂ x


∂ xy

∂ y


∂ xz

∂ z  y y z
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Equations of Motion
(Govern motion of the elastic body 

with time)

Uncompensated net force will result in acceleration 
(Newton's law): 

These are the 
equations of 
motion for each 
of the 
components of 
U: 


∂2U i

∂ t 2 =
∂ ix

∂ x


∂ iy

∂ y


∂ iz

∂ z


 V
∂2 U i

∂ t 2 =F iNewton's law:
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Wave Equation
(Propagation of 

compressional/acoustic waves)
To show that these three equations describe several 
types of waves, first let's apply divergence 
operation to them: 

This is a wave equation; compare to the general 
form of  equation describing wave processes: 

Above, c is the wave velocity.
 We have:

This equation describes compressional (P) waves
P-wave velocity:
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Wave Equation
(Propagation of shear waves)

Similarly, let's apply the curl operation to the 
equations for U (remember, curl(grad) = 0 for 
any field: 

This is also a wave equation; again compare to 
the general form: 

This equation describes shear (S), or transverse 
waves. 
Since it involves rotation, there is no associated 
volume change, and particle motion is across the 
wave propagation direction.
Its velocity:VS < VP, 

    For ν = 0.25, V P /V S=3 V S=
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Wave Polarization
 Thus, elastic solid supports two types of body 
waves:
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Waveforms and 
wave fronts

Plane waves
Consider the wave equation:

Why does it describe a wave? Note that it is  
satisfied with any function of the form:

The function ϕ() is the waveform. Note that the 
entire waveform propagates with time to the 
right or left along the x-axis , x=±ct. This is 
what is called the wave process.

The argument of ϕ(...) is called phase. 

Surfaces of constant phase are called 
wavefronts. 

In our case, the wavefronts are planes:          
x = phase ±ct      for any (y,z). For this reason, 
the above solutions are plane waves.
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Waveforms and 
wave fronts
Non-planar waves

The wave equation is also satisfied by such 
solutions (spherical waves):

f  x , t = 1
∣r∣

∣r∣−Vt  f  x , t = 1
∣r∣

∣r∣Vt 

Question: what is the problem with the 
second solution in each pair?

...and by such (cylindrical waves):

f ( x , t)= 1
√ρ ϕ(ρ−Vt ) f ( x , t)= 1

√ρ ϕ(ρ+Vt )

...and by various others.
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Waves and sources

Homogeneous wave equation  describes free 
waves:

  plane, spherical, cylindrical...
  incoming, outgoing... 

Inhomogeneous equation describes waves 
generated by a source:

Note that this also includes all of the free 
waves, and so one also needs boundary 
conditions to specify a unique solution

  For example, no waves come from infinity 
toward the source (“radiation condition”)

( 1
c2

∂2

∂2 t
−∇ 2) f =0

( 1
c2

∂2

∂2 t
−∇ 2) f =source
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