Digital Filtering

- Convolution of time series
- Convolution as filtering process
- Cross- and auto-correlation
- Frequency filtering
- Deconvolution
- <u>Reading:</u>
 - > Telford et al., Sections A.10,11

Convolution of time series

- *Convolution* for time (or space) series iswhat commonly is multiplication fornumbers.
- Example of a '*convolutional model*': rise in lake level resulting from rainfall
 - Let's assume that the recorded rainfall over 5 months is: 2, 3, 1, 4, 3 cm, respectively.
 - The lake level will respond to a 1 cm of rain fall, say, with a 2-cm rise in the first month and 1-cm in the second. This is called the *'impulse response'*.
 - Lake level rises from the different months of rainfall will accumulate *linearly*.

Lake Level Rise Numerical example

The resulting lake levels can be calculated by the following procedure, called *convolution*:

	1	2	3	4	5	Months
1	2 2 4	3	1	4	3	Rainfall time series Lake response (reversed) Rise in the first month
	2 <u>1</u> 2+	3 2 6=	1 8	4	3	Rise in the second month
	2	3 <u>1</u> 3+	1 2 2=	4 5	3	Rise in the third month
	2	3	1 <u>1</u> 1+	4 2 8=	3 9	Rise in the fourth month
	4	8	5	9		Resulting lake level sequence

The impulse response series is reversed and shifted, and sample-by sample dot product is taken to find the response at any moment

Convolution General formulae

- The resulting lake levels can be calculated by the following procedure, called *convolution*. Convolution of two series, u_i , and w_i , denoted u^*w , is: $(u*w)_k = \sum_i u_{k-i}w_i$
- As multiplication, it is symmetric (commutative): u * w = w * u
- Note that if we need to multiply two polynomials, with coefficients u_k and w_k , we would use exactly the formula above. Therefore, in *Z* or *frequency* **domains, convolution becomes simple multiplication** of polynomials (<u>show this!</u>):

$$u * w \leftrightarrow Z(u)Z(w) \leftrightarrow F(u)F(w)$$

This is the key property <u>facilitating efficient</u> <u>digital filtering</u>.

Convolution Two important cases of interest

Digital signal filtering

- **Earth's response** is also a filter. Note that in this case, the *impulse response* is unknown and is of primary interest
 - Hence reflection processing deals with inverse filtering... (i.e., finding the filter)

Convolutional model of a reflection seismic record

Reflection seismic trace is a convolution of the source wavelet with the Earth's 'reflectivity series'

Convolutional model

A more realistic example

From Yilmaz, 1987

Cross- and Autocorrelation

Cross-correlation gives the degree of similarity between two signals:

- For each value of a 'lag' i:
- Shift the second trace by the lag
- Calculate dot product:

$$\operatorname{cross}(u, w)_k = \sum_i u_{k+i} w_i$$

- The lag for which the cross-correlation is largest gives the time shift between the two records
 - A most important application pre-processing of Vibroseis recordings
- *Auto-correlation* of a record is its crosscorrelation with itself
 - It is symmetric in terms of positive and negative lags
 - It indicates the degree to which the signal repeats itself.

Linear Filtering

• Most operations with seismic signals can be represented by a convolutional operator:

$$v = F u$$

It is *linear*:

$$F(u_1+u_2)=Fu_1+Fu_2$$

It is translationally (time-) invariant:

F time shifted $_t(u)$ = time shifted $_t(Fu)$

- The filtering operator is represented differently in different domains:
 - Convolution in time domain
 - Complex-value multiplication in Z- and frequency domains
 - This allows easy frequency filtering (selective enhancement or suppression of harmonic components in the signal)

Frequency Filtering

- Key element of seismic and GPR processing.
- Low-pass (high-cut), Band-pass, High-pass (low-cut), Notch
 - Suppressing the unwanted (noisy) parts of the frequency spectrum.
 - Usually *zero-phase*, to avoid phase (traveltime) distortion. This means that the filter does not change the phase spectrum.

Filter panels

 Trial band-pass filter panels are designed in order to determine the best frequency range for data display and analysis. For a final display, *time-variant* filters are used.

Deconvolution

Deconvolution (inverse) filters

- To remove (reduce) the effects of wavelet's complexity on the resulting image.
- Based on the known (or estimated) wavelet shape, an *inverse* filter is designed with the objective to compress this wavelet in time:

- Numerous deconvolution techniques are available
 - Performed in time or frequency domains.

Deconvolution (shot gathers)

From Yilmaz, 1987

Deconvolution (stack)

From Yilmaz, 1987

Interpreters certainly prefer working with the crisper, high-resolution image (b) that uses deconvolution.

Signal/Noise Ratio enhancement by filtering

- This is an example of the most common *multichannel filter*.
- Records are summed ('*stacked*') in order to increase the *S*/*N* ratio:
 - ◆ Signal is assumed the same in all channels, therefore, its amplitude is increased ∝N (the number of records);
 - For *incoherent noise*, the energy becomes proportional to *N*, and so the amplitude increases as \sqrt{N} ;
 - Therefore, the *S*/*N* ratio $\propto \sqrt{N}$.
 - Note: <u>coherent noise</u> cannot be suppressed by stacking!

From Reynolds, 1997