Seismic Sources

- Seismic sources
 - Earthquakes
 - Faults;
 - Moment tensor and magnitudes
 - Sources used in seismic exploration
 - Requirements;
 - Principles;
 - Onshore, offshore.

Reading:

- > Shearer, 9.1-9.3
- > Telford *et al.*, Section 4.5

Sources of seismic energy

- Natural (earthquakes)
 - Mostly shear-wave ("doublecouple");
 - Result from sudden slipping of blocks of rock along faults ("stress release");
- Artificial (used in seismic exploration)
 - Mostly *P*-wave (pressure);
 - Produced by explosives or various kinds of mechanical impact.

Some Source Theory

Generally, a force **f** applied at point \mathbf{x}_0 causes displacement **u** that is proportional to the force:

$$u_i(x,t) = G_{ij}(x,t;x_{0,}t_0) f_j(x_{0,}t_0)$$

"Green's function"

- A single point force could only be applied from the outside;
- An *internal* source would have to conserve the momentum and angular momentum, and thus it cannot exist alone
- Seismic source forces always exist in mutually compensated *force couples*:

Force Couples

Earthquake faults

In terms of slip motion, faults areidentified as predominantly "strike-slip"(horizontal motion) and "dip-slip"(vertical-motion) faults

Fig. 9.4. Owing to the symmetry of the moment tensor, these right-lateral and left-lateral faults have the same moment tensor represention and the same seismic radiation pattern.

Earthquake faults

Displacement and seismic wave fieldsproduced by a slip on a fault areequivalent to those caused byorthogonal pressure and tension:

Fig. 9.5. The douple-couple pair on the left is represented by the off-diagonal terms in the moment tensor, M_{12} and M_{21} . By rotating the coordinate system to align with the *P* and *T* axes, the moment tensor in the new coordinate system is diagonal with opposing M_{11} and M_{22} terms.

Radiation patterns ("earthquake beach balls")

Moment tensor

Nine different possible force couples form the source *moment tensor* M_{ii} :

In each of these plots, $f = M_{ii}d$

Seismic Moment

For a right-lateral movement on a vertical fault oriented along the *x* direction, the moment tensor is:

$$\boldsymbol{M} = \begin{pmatrix} 0 & M_0 & 0 \\ M_0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where the *scalar seismic moment*: $M_0 = \mu DA$

(μ is the shear modulus, D – fault displacement, and A – slip area)

*M*₀ measures the energy release and is related to seismic magnitude

Earthquake classification

Based on numeric "magnitudes"

Magnitude	Туре	Effect	Frequency	
< 2.0	Micro	Not felt	~8,000/day	
2.0 - 2.9	Minor	Recorded, not felt	~1,000/day	
3.0 - 3.9		Felt, damage rare	50,000/year	
4.0 - 4.9	Light	Noticeable shaking; no significant damage	6,200/year	
5.0 - 5.9	Moderate	Damages poor buildings in local areas	800/year	
6.0 - 6.9	Strong	Can be destructive over ~100 miles in populated areas	120/year	
7.0 - 7.9	Major	Serious damage over large areas	18/year	
8.0 - 8.9	Great	Serious damage over several hundred miles	1/year	
9.0 - 9.9		Devastating in ~1000 miles across	1 per 20 years	
10.0+	Massive	Planetwide (never recorded)	Unknown	

Seismic Magnitude Richter scale

 The Richter scale ("local magnitude") measures the combined horizontal displacement on "Wood-Anderson torsion" seismometer

$$M_{L} = \log_{10} \frac{A_{shaking}}{A_{0}(\Delta)}$$

Empirical correction for distance, Δ

- The energy release scales with the power of 3/2 of A_{shaking}
 - Thus, a difference of 1.0 in M_L
 corresponds to a factor 10^{3/2} ≈ 31.6
 in energy

Seismic Magnitude Moment Magnitude scale

- Starting from 1970's, supersedes the Richter scale
- Reflects real physical parameters of earthquake source
- Based on the seismic moment M_0^{-7} above in dyne·cm (10⁻⁷ N·cm):

$$M_{W} = \frac{2}{3} \log_{10} M_{0} - 10.7$$

- As with the Richter scale, an increase of 1.0 in M_W corresponds to $10^{3/2} \approx 31.6$ times increase in energy
- Earthquake energy in Joules:

$$E = 10^{9+1.5M_w}$$

Source in Seismic Exploration

- Localized region within which a sudden increase in elastic energy leads to rapid stressing of the surrounding medium.
- Most seismic sources preferentially generate *P*-waves
 - Easier to generate (pressure pulse);
 - Easier to record and process (earlier, more impulsive arrivals).
- Requirements
 - Broadest possible frequency spectrum;
 - Sufficient energy;
 - Repeatability;
 - Safety environmental and personnel;
 - Minimal cost;
 - Minimal coherent (source-induced) noise.

Land Source

Explosives – chemical base

- Steep pressure pulse.
- Shotguns, rifles, blasting caps;
- …bombs, nuclear blasts…
- Surface (mechanical)
 - Weight drop, hammer;
 - Piezoelectric borehole sources (ultrasound);
- Continuous signal
 - Vibroseis (continuously varying frequency, 10-300 Hz)
 - Mini-Sosie (multiple impact);
 - Combination with Vibroseis (Swept Impact Seismic Technique, SIST)
 - Drill bit ('Seismic While Drilling');
 - sparkers, ...truck spark plugs.

Mechanism of generation of seismic waves by explosion

Stage 1: Detonation.

- Start of explosion electric pulse ignites the *blasting cap* placed inside the charge. The pulse is also transmitted to recorder to set *t* = 0;
- Disturbance propagates at ~ 6-7 km/s (supersonic velocity); surrounding medium is unaffected;
- The explosive becomes hot gas of the same density as the solid - hence its pressure is very high (several GPa)
- **Stage 2**: Pressure pulse spreads out spherically as an *inelastic shock wave*
 - Stresses >> material strength;
 - Extensive cracking in the vicinity of the charge.
- **Stage 3**: At some distance, the stress equals the elastic limit
 - Pressure pulse keeps spreading out spherically as an elastic wave.

Important parameters of an explosion

Radius of the Explosion Cavity:

$$R[ft] = BW^{\frac{1}{3}}$$
 Weight in lbs

Rock type	Granite	Chalk	Limestone	Soft Sandstone	Clay
В	0.46	0.6	0.3-1.0	1.3	1.3

Pulse width:

$$T[ms]=2.8 \cdot W^{\frac{2}{3}}$$

• Frequency *decreases* for larger charges.

Energy:

- Only 4 % (soft sandstone), 9% (clay) to 10-20 % (granite) of chemical energy is radiated as seismic waves;
- Absorption and scattering cause energy loss:
 - At 3 m from the source, there remains 2.5 % of available energy;
 - > At 30 m 0.5 %.
- Effects of shot depth:
 - If water table is shallow place shots below it;
 - Seismic amplitude increases as the shot depth decreases
 - However, ground roll becomes broadband and hard to attenuate.

Criteria for selection of explosives

Density

• Higher density means the explosive column length is shortened, resulting in an energy pulse of higher frequency. Higher frequency means better data quality. Typical values are 1.2-1.8 g/cc.

Velocity

 Higher velocity means a higher frequency energy pulse will be generated because the explosive column detonates more quickly. Typical values are 6-8 km/sec.

Detonation pressure

 Detonation pressure is an indication of energy released by the detonation. High detonation pressure is beneficial in seismic blasting. Typical range - 2-4 GPa (70-250 kBar).

Self-disarming

 Unexploded charges left in the ground could be hazardous to future drilling or excavation. Seismic explosives that self-disarm are the best choice.

Standard for minimum distances

- International Association of Geophysical Contractors:
 - Pipelines 60 m;
 - Telephone lines 12 m;
 - Railroad tracks 30 m;
 - Electric lines 24 m;
 - Oil wells 60 m;
 - Water wells, cisterns, masonry buildings 90 m.
- Ground velocity of 5 cm/s is considered 'safe' for structures
 - For seismic explosives, achieved at distances $x = 23m^{1/3}$ m, where *m* is the charge in kg.

Explosives

- Gelatin dynamite, ammonium nitrate, pentolite (SEIS-X).
- Packaged in tins, cardboard or plastic tubes ~5 cm in diameter (0.5-5 kg each).
- Connected to make desired charges.

Charge emplacement

Drill stem

Bit screwed onto drill stem (mud emerges through bit)

N N N N

Surface Energy Sources (less powerful, easier access)

Thumper/weight dropper

Bison Accelerated Weight Dropper

DIGPULSE 1180

Dynoseis

- Mixture of O₂ and propane exploded in an expandable chamber with a metal plate as the bottom
- Mounted on a truck or used as a buried explosive charge
- Self-disarming (the metal plate rusts through and the gas dissolves)

Vibroseis

Used in > 1/2 of land seismic exploration

Vibroseis

- Energy introduced into the Earth in the form of a sweep of varying frequency for several seconds
 - Typical sweep time 7-35 s;
 - ~45 minutes in recent mantle investigations
 - Typical frequencies 12 -> 60 Hz (upsweep) or 60 -> 12 Hz (downsweep);
 - Low energy density environmentally friendly;
 - Time-Distributed signal lower noise requirements.
- A control signal causes a vibrator to exert variable pressure on a steel plate pressed against the Earth.
 - Radio-controlled hydraulics allows syn-phase vibration of a group of vibrators;
 - Shear-wave vibrators also shake the ground in horizontal directions

Vibroseis

Mini-Vibroseis

Vibroseis Correlation

- Recorded signal is *cross-correlated* with the *sweep* sent into the ground
 - As a result, matching waveform patterns (caused by reflections) are identified;
 - The signal is compressed in time the energy of the entire sweep is condensed into a single pulse.

Other Land Sources (for shallow or mine investigations)

Sosie, Mini-Sosie, SIST

 Impactor hits ground 5-15 times per second, in ~3min long, *pseudo-random* series.

Sparkers

Air Gun Primary marine source

- High pressure bubble of air is released into the water
 - Operating pressure 10-15 MPa, in 1-4 ms;
 - Size (volume of the lower chamber) 10-2000 in³ (0.16-33 liters)
 - Primary pulse is followed by a surface ghost and a train of bubble pulses

Air Gun Bubble oscillations

- Over-pressured bubble expands expelling water radially
 - … and becomes.. under-pressured;
- Under-pressured bubble collapses under water pressure
 - … and becomes over-pressured again.
- This cycle is repeated until the energy dissipates and/or bubble vents into through the surface.

Suppression of bubble pulses

Bubble pulses can be suppressed in two ways:

- Use array of air guns with different dimensions;
- Shallow firing (~2 m) - bubble vents to the surface.

During digital processing, the wavelet is further compressed by using *deconvolution*.

Other Marine Sources

Water gun

- Compressed air drives a piston that ejects a jet into the surrounding water;
- Vacuum cavity created behind the jet causes an implosion generating a strong pulse.
- No bubble pulse.

Piezoelectric transducers

- *e.g.*, barium titanate change their volume when subjected to electric field;
- Up to 2-10 kHz frequency for shallow water work.

