Refraction Seismic Method

- Intercept times and apparent velocities;
- Critical and crossover distances;
- Hidden layers;
- Determination of the refractor velocity and depth;
- The case of dipping refractor
- Inversion methods:
 - "Plus-minus" method;
 - Generalized Reciprocal Method;
 - Travel-time continuation.

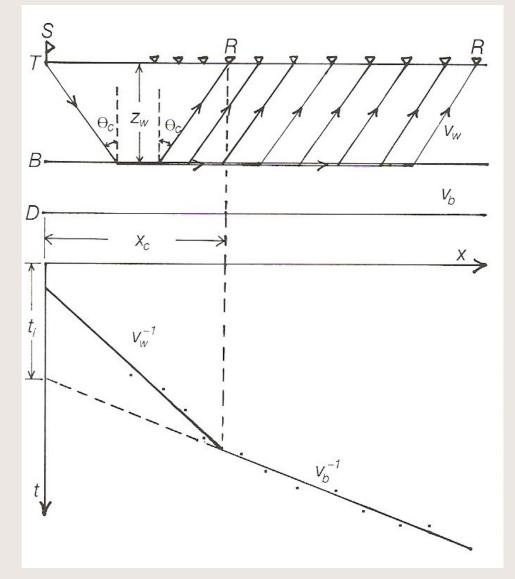
Reading:

- > Reynolds, Chapter 5
- Shearer, Chapter 4
- > Telford et al., Sections 4.7.9, 4.9

Refraction Seismic Method

Uses **travel times** of refracted arrivals to derive:

- 1) Depths to velocity contrasts ("refractors");
- 2) Shapes of refracting boundaries;
- 3) Seismic velocities.



Apparent Velocity Relation to wavefronts

Apparent velocity, $V_{app,}$ is the velocity at which the wavefront sweeps across the geophone spread.

Because the wavefront also propagates upward,

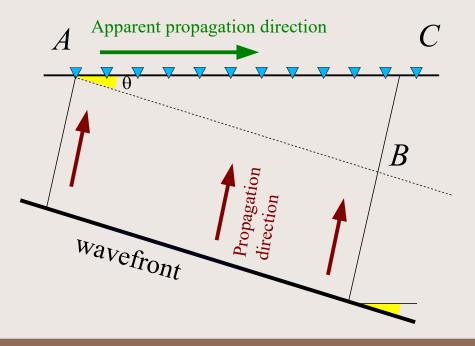
$$AC = \frac{BC}{\sin \theta}$$

$$\longrightarrow V_{app} = \frac{V}{\sin \theta}.$$

2 extreme cases:

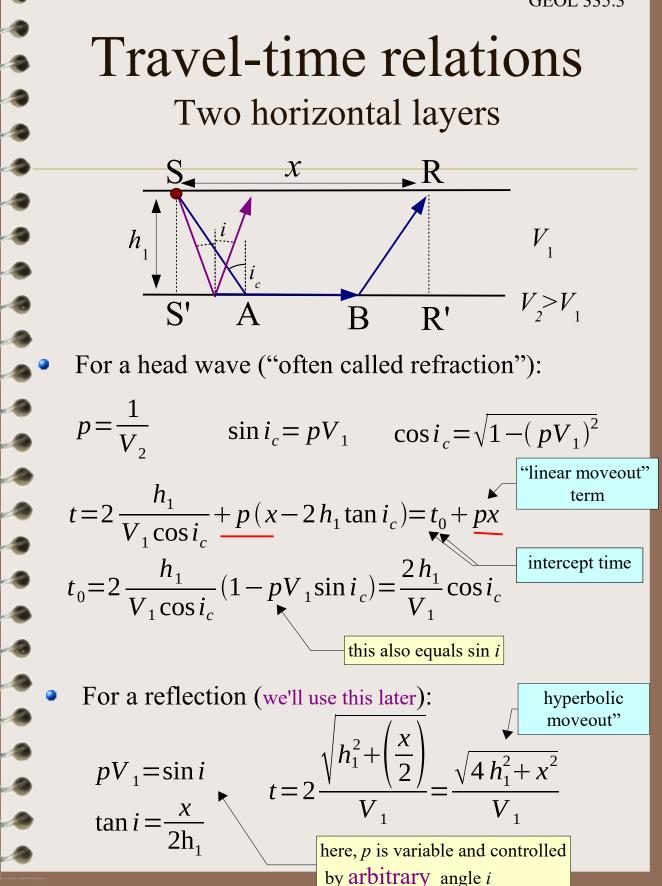
$$\Theta = 0: V_{app} = \infty;$$

$$\theta = 90^{\circ}$$
: $V_{app} = V_{true}$

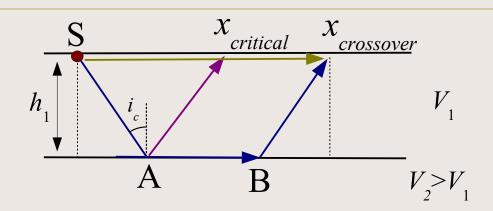


Two-layer problem One reflection and one refraction





Critical and cross-over distances



Critical distance:

$$x_{critical} = 2h_1 \tan i_c = 2h_1 \frac{V_1/V_2}{\sqrt{1 - (V_1/V_2)^2}} = \frac{2h_1V_1}{\sqrt{V_2^2 - V_1^2}}$$

$$t_{direct}(x_{crossover}) = t_{headwave}(x_{crossover})$$

$$\frac{x_{crossover}}{V_1} = t_0 + \frac{x_{crossover}}{V_2}$$
$$x_{crossover} = \frac{t_0}{(1/V_1 - 1/V_2)}$$
"slownesses"

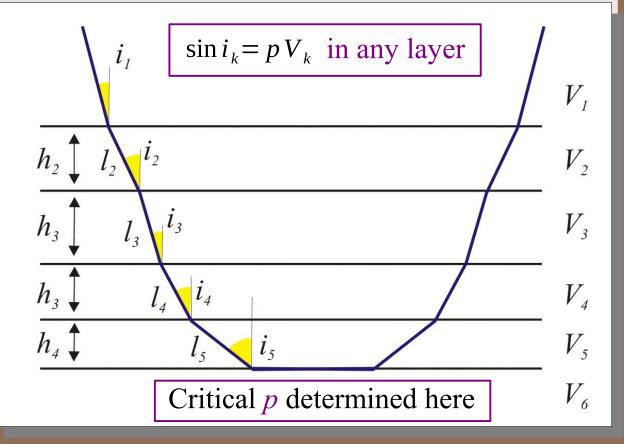
Multiple-layer case (Horizontal layering)

p is the same critical ray *p* parameter;

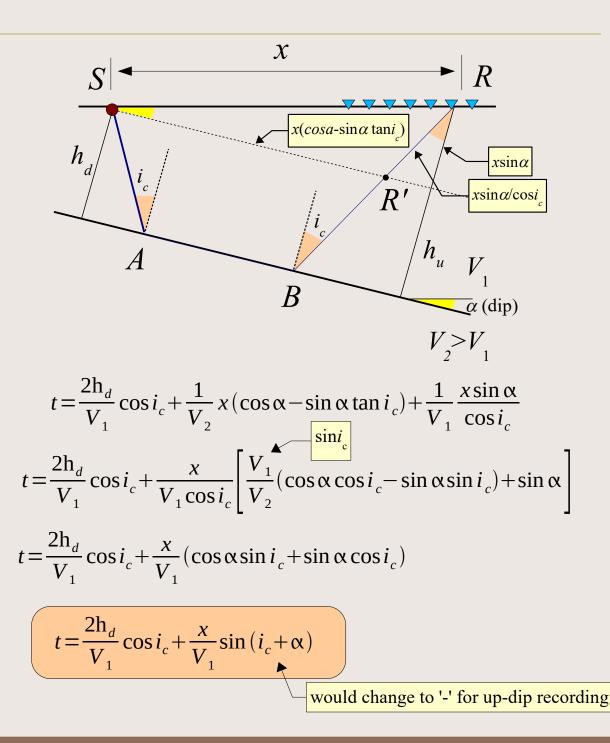
> t_0 is accumulated across the layers:

$$p = \frac{1}{V_{refractor}}$$

$$t = \sum_{k=1}^{n} \frac{2h_k}{V_k} \cos i_k + px$$

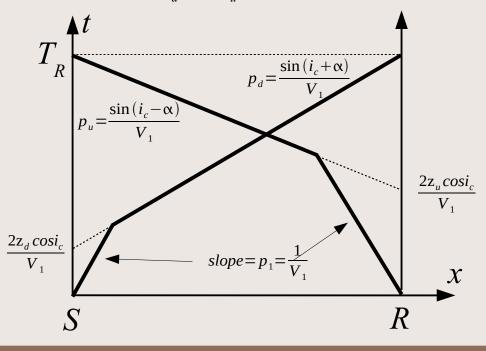


Dipping Refractor Case shooting down-dip



Refraction Interpretation Reversed travel times

- One needs *reversed* recording (in opposite directions) for resolution of dips.
- The *reciprocal times*, T_{R} , must be the same for reversed shots.
- Dipping refractor is indicated by:
 - Different *apparent velocities* (=1/p, TTC slopes) in the two directions;
 - > determine V_2 and α (refractor velocity and dip).
 - Different intercept times.
 - > determine h_d and h_u (interface depths).



Determination of Refractor Velocity and Dip

Apparent velocity is $V_{app} = 1/p$, where p is the ray parameter (i.e., slope of the travel-time curve).

Apparent velocities are measured directly from the observed TTCs;

 $V_{app} = V_{refractor}$ only in the case of a horizontal layering.

For a dipping refractor:

Down dip:
$$V_d = \frac{V_1}{\sin(i_c + \alpha)}$$
 (slower than V_1);

> Up-dip:
$$V_u = \frac{V_1}{\sin(i_c - \alpha)}$$
 (faster).

From the two reversed apparent velocities, i_c and α are determined:

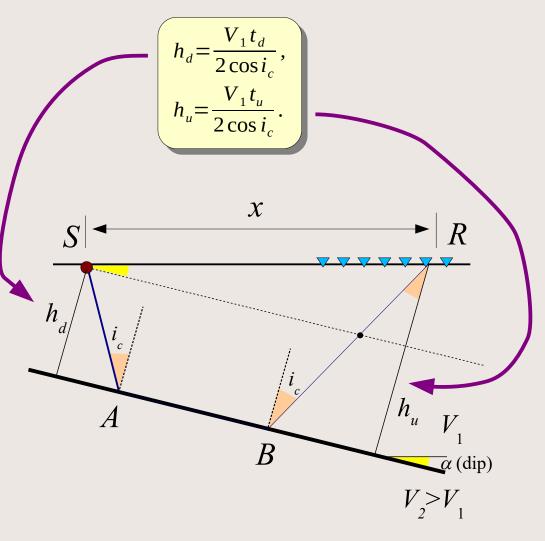
 V_2 =

$$i_{c} + \alpha = \sin^{-1} \frac{V_{1}}{V_{d}}, \qquad i_{c} - \alpha = \sin^{-1} \frac{V_{1}}{V_{u}},$$
$$i_{c} = \frac{1}{2} (\sin^{-1} \frac{V_{1}}{V_{d}} + \sin^{-1} \frac{V_{1}}{V_{u}}),$$
$$\alpha = \frac{1}{2} (\sin^{-1} \frac{V_{1}}{V_{d}} - \sin^{-1} \frac{V_{1}}{V_{u}}).$$

From i_c , the refractor velocity is:

Determination of Refractor Depth

From the *intercept times*, t_d and t_u , *refractor depth* is determined:



Delay time

- Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).
 - In this case, we can separate the times associated with the source and receiver vicinities: $t_{SR} = t_{SX} + t_{XR}$.

Relate the time t_{SY} to a time along the refractor, t_{RY} .

$$t_{SX} = t_{SA} - t_{BA} + t_{BX} = t_{SDelay} + x/V_2.$$

$$t_{SDelay} = \frac{SA}{V_1} - \frac{BA}{V_2} = \frac{h_s}{V_1 \cos i_c} - \frac{h_s \tan i_c}{V_2} = \frac{h_s}{V_1 \cos i_c} (1 - \sin^2 i_c) = \frac{h_s \cos i_c}{V_1}.$$

Note that $V_2 = V_1 / \sin i_c$

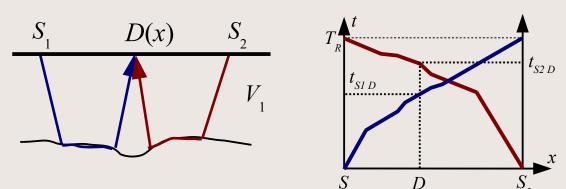
Thus, source and receiver *delay times* are:

$$t_{S,RDelay} = \frac{h_{s,r} \cos i_c}{V_1} \text{ and } t_{SR} = t_{SDelay} + t_{RDelay} + \frac{SR}{V_2}$$

Plus-Minus Method (Weathering correction; Hagedoorn)

Assume that we have recorded two headwaves in opposite directions, and have estimated the velocity of overburden, V_{1}

How can we map the refracting boundary?



Solution:

- ▶ Profile $S_2 \to S_1$: $t_{S_2D} = \frac{(S_1S_2 x)}{V_2} + t_{S_2} + t_{D_2}$
- Form PLUS travel-time:

$$t_{PLUS} = t_{S_1D} + t_{S_2D} = \frac{S_1S_2}{V_2} + t_{S_1} + t_{S_2} + 2t_D = t_{S_1S_2} + 2t_D.$$

Hence: $t_D = \frac{1}{2}(t_{PLUS} - t_{S_1S_2}).$

To determine i_{c} (and depth), still <u>need to find</u> V_{2} .

Plus-Minus Method (Continued)

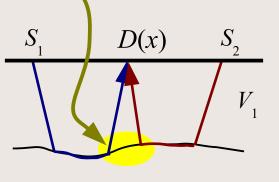
- To determine V_2 :
 - Form MINUS travel-time:

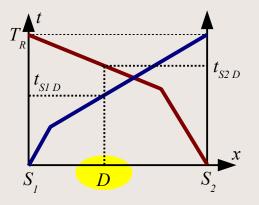
$$t_{MINUS} = t_{S_1D} - t_{S_2D} = \frac{2x}{V_2} - \frac{S_1S_2}{V_2} + t_{s_1} - t_{s_2}.$$

Hence:

$$slope[t_{MINUS}(x)] = \frac{2}{V_2}.$$

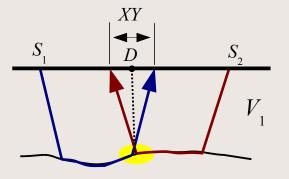
- The slope is usually estimated by using the Least Squares method.
- <u>Drawback</u> of this method averaging over the pre-critical region.





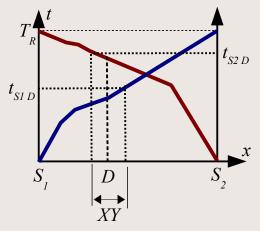
Generalized Reciprocal Method (GRM)

- Introduces offsets ('XY') in travel-time readings in the forward and reverse shots;
 - so that the imaging is targeted on a compact interface region.
- Proceeds as the plus-minus method;
- Determines the 'optimal' XY:
 - 1) Corresponding to the most linear velocity analysis function;
 - 2) Corresponding to the *most detail* of the refractor.



The velocity analysis function:

$$\underbrace{t_{V} = \frac{1}{2} (t_{S_{1}D} - t_{S_{2}D} + t_{S_{1}S_{2}})}_{2}$$



should be linear, slope $= 1/V_2$;

The time-depth function:

$$t_{D} = \frac{1}{2} \left(t_{S_{1}D} + t_{S_{2}D} - t_{S_{1}S_{2}} - \frac{XY}{V_{2}} \right).$$

this is related to the desired depth:

$$h_{D} = \frac{t_{D}V_{1}V_{2}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$$

Head-wave "migration" (travel-time continuation) method

- "Migration" refers to transforming the spacetime picture (travel-time curves here) into a depth image (position of refractor).
- Refraction (head-wave) migration:
 - Using the observed travel times, draw the headwave wavefronts in depth;
 - Identify the surface on which:

 S_1

$$t_{forward}(x, z) + t_{reversed}(x, z) = T_R$$

 S_{γ}

This surface is the position of the refractor.

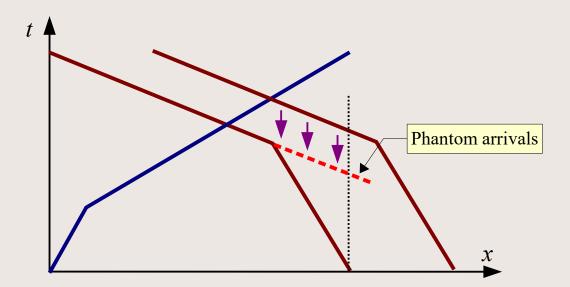
Constant travel times from S_{γ}

X

Constant travel times from S_1

Phantoming

- Refraction imaging methods work within the regionsampled by head waves, that is, beyond criticaldistances from the shots;
- In order to extend this coverage to the shot points, *phantoming* can be used:
 - Head wave arrivals are extended using time-shifted picks from other shots;
 - *However*, this can be done only when horizontal structural variations are small.



Hidden-Layer Problem

Velocity contrasts *may not be visible* in refraction (first-arrival) travel times. Three typical cases:

• Low-velocity layers do not appear in first arrivals in principle:

