Geol 335.3

Lab \#6: Common mid-point method

In this lab, you will study the principle of the common-midpoint (CMP) reflection method by making simple Matlab simulations. Tools and functions from the previous labs will be useful in this exercise.

Theory

Unlike the common-shot seismic data studied in the previous lab, CMP records are collected by moving both sources and receivers in opposite directions so that their midpoint remains constant while the source-receiver distance increases. CMP gathers are usually presented in the form of time-offset seismic sections.
The primary use of CMP gathers is for stacking velocity analysis. There exist many ways to calculate the "semblance" function, which is used to determine the optimal values of stacking velocity V at variable reflection times t_{0}. In its simplest form, velocity analysis is performed by trying a set of and for each of them, stacking the energy along the reflection hyperbola:

$$
\begin{equation*}
\text { Semblance }\left(t_{0}, V\right)=\frac{1}{N} \sum_{i=1}^{N} u_{i}^{2}\left(\sqrt{t_{0}^{2}+\left(\frac{x_{i}}{V}\right)^{2}}\right) \tag{1}
\end{equation*}
$$

where $u_{i}(t)$ is the signal it $i^{\text {th }}$ channel, and x_{i} is the source-receiver offset at its location. However, in this lab, we use a different measure that provides smoother peaks:

$$
\begin{equation*}
\text { Semblance }\left(t_{0}, V\right)=\text { const } \times \operatorname{smooth}\left\{\left[\sum_{i=1}^{N} u_{i}\left(\sqrt{t_{0}^{2}+\left(\frac{x_{i}}{V}\right)^{2}}\right)\right]^{2}\right\}, \tag{2}
\end{equation*}
$$

i.e. smoothed squared stack of the waveforms evaluated along the reflection hyperbola.

For a horizontal reflector, the stacking velocity equals the averaged (in the sense discussed in class) velocity above it. When reflector dip α is present, the stacking velocity increases:

$$
\begin{equation*}
V_{\text {with dip }}=\frac{V_{\text {no dip }}}{\cos \alpha} . \tag{3}
\end{equation*}
$$

Code

In another copy of your model.m file (from lab 5), rename sources to midpoints. For each midpoint number n, you can obtain a CMP section by using a small modification of function reflection (...) called reflection_CMP (...) . In this function, source positions are variable for each receiver, so that the midpoint is fixed. The resulting section will be produced by

```
sec = reflection_CMP(midpoints(1),receivers,layer, 2.0);
```

and plotted by

```
plot_section(offsets(1),sec,'Offset (m)','b-')
```

where the relative source-receiver distances (called "offsets") can be found as (verify this!):

```
offsets = 2*(receivers - midpoints(1)).
```

To compute velocity spectra in eq. (2), we provide function semblance (). Look into its code. Note that it is constructed very similarly to reflection (), by first initializing a blank semblance and then adding to it contributions from all traces using interp1 (). The output of semblance () also represents a trace section, which can be plotted by plot_section():

```
plot_section(V, sec,'V(km/s)','b-'),
```

where V is the array of trial stacking velocities.

Assignments

1. [10\%] Put only one point into array midpoints (in the middle of the model). Execute the modified script model.m and pick 2 points to make a horizontal reflecting boundary. Place the boundary in the bottom half of the section.
2. [20\%] Add to your program another call to picklayer () and pick two more layers (named layer2, and layer3, for example) shallower than the first one. If you like, also try a third layer.
3. [10\%] Generate reflection sections (by using reflection ()) with different velocities $V=2,1.5$, and $1 \mathrm{~km} / \mathrm{s}$ for the layers, and sum the three sections together.
4. [10\%] Using the resulting CMP gather for midpoint \#2 (at the middle), compute and plot the velocity spectrum (eq. 2) for stacking velocities $\mathrm{v}=0.7: 0.05: 2.5$ m / ms (note that these units are the same as km / s).
5. [10\%] Determine whether the velocities an t_{0} set for the three reflectors are correctly determined by the peaks in velocity spectrum. From the plots, describe the velocity resolution (width of velocity peaks) varies with t_{0} and velocity.
6. [20\%] Run model.m again and pick 2 points to make a dipping reflecting boundary close to the depth of the middle reflector in the preceding test. Plot the common-midpoint gather. How does it differ from the horizontal-reflector case? Is it shifted up-dip or down-dip (or not shifted)? What happens if the dip is changed?
7. [10\%] Plot the velocity spectrum for the dipping interface case. How do the optimal stacking velocity change? Why? Compare the result to the prediction from formula (2).
8. [10\%] Try summarizing the differences of the horizontal and dipping reflector cases.

Hand in:

Zipped directories containing:

1. All Matlab codes ("m-files");
2. Screen captures or Postscript/PDF figures;
3. Discussion in a Word file.
