Elasticity and Seismic Waves

- Concepts of macroscopic mechanics of solids Rock as 'elastic continuum'
- Elastic body is deformed in response to stress
- Two types of deformation (strain): Changes in volume and shape
- Equations of motion

Wave equations
Plane and spherical waves

- Reading:
- Shearer, Sections 2, 3
- Telford et al., Section 4.2.

Mechanical properties of continuous solids (or fluids)

- In seismic waves, we consider only small deformations (one part out million or less)
- Particles only oscillate slightly near equilibrium points, and the behaviour of fluids/gases is similar to solids

I try explaining mechanics of continuous solid media through analogies with a mass suspended on a spring:

- Mass of the body m is analogous to density ρ
- Force vector \mathbf{F} is analogous to stress tensor σ
- Extension of the spring \mathbf{x} - to strain tensor $\boldsymbol{\varepsilon}$
- Hooke's law F = -kx - to Hooke's law for solids
- Elastic constant $k-$ to elastic "moduli" for solids
- Newton's law $m \mathbf{a}=\mathbf{F}$ also applies in both cases
- Oscillations of mass m correspond to waves and multiple forms of free oscillations of solid bodies
- In the following slides, we go through these concepts one by one

Stress

- Consider the interior of a deformed body:

At point P, force $d \mathbf{F}$ acts on any infinitesimal area $d S$
$d \mathbf{F}$ is proportional to $d S$
(shown on the next slide)
Stress, with respect to direction \mathbf{n}, is a vector equal:
$\lim (d \mathbf{F} / d S)($ as $d S \rightarrow 0)$

- Stress is measured in [Newton $\left./ m^{2}\right]$, or Pascal
- Note that this is a unit of pressure
$d \mathbf{F}$ can be decomposed in two components relative to the surface or \mathbf{n} :
- Orthogonal to the surface (parallel to \mathbf{n}; this called normal stress)
- Tangential to the surface (shear stress)

Stress

Stress, in general, is a tensor:

- It is described in terms of 3 force components acting across each of 3 mutually orthogonal surfaces
- 6 independent parameters
- Force $d \mathbf{F} / d S$ depends on the orientation \mathbf{n}, but stress does not
- Stress is best described by a matrix:

$$
\begin{aligned}
& \left(\begin{array}{l}
d F_{x} \\
d F_{y} \\
d F_{z}
\end{array}\right)=d S\left(\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)\left(\begin{array}{l}
n_{x} \\
n_{x} \\
n_{x}
\end{array}\right), \\
& \sigma_{x y}=\sigma_{y x}, \quad \text { Shear stress } \\
& \text { Normal stress } \\
& \sigma_{x z}=\sigma_{z x}, \quad \text { components } \\
& \sigma_{y z}=\sigma_{z y} \quad \text { are symmetric }
\end{aligned}
$$

- In a continuous medium, stress depends on (x, y, z, t) and thus it is a field

Forces acting on a small cube

Consider a small cube within the elastic body. Assume dimensions of the cube equal ' 1 '
Both the forces and torque acting on the cube from the outside are balanced:

$$
\left(\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)
$$

In consequence, the stress tensor is symmetric: $\sigma_{i j}=\sigma_{j i}$
The stress tensor is given by just 6 independent parameters out of 9

Strain within a deformed body

Strain is a measure of deformation, i.e., variation of relative displacement as associated with a particular direction within the body

It is, therefore, also a tensor

- Represented by a matrix
- Like stress, it is decomposed into normal and shear components
- Seismic waves yield strains of $10^{-10}-10^{-6}$
- So we rely on infinitesimal strain theory

Elementary Strain

When a body is deformed, displacements (\mathbf{U}) of its points are dependent on (x, y, z), and consist of:

- Translation (blue arrows below)
- Deformation (red arrows)

Elementary strain is simply

$$
e_{i j}=\frac{\partial U_{i}}{\partial x_{j}}
$$

$$
z \uparrow \frac{\partial \mathbf{U}}{\partial z} d z=\left(\frac{\partial U_{x}}{\partial z} d z, \frac{\partial U_{z}}{\partial z} d z\right)
$$

Strain Components

However, certain forms of $\mathbf{U}(x, y, z)$ dependencies correspond to simple rotations of the body without changing its shape:

- Deformation in which $\frac{\partial U_{z}}{\partial x}=-\frac{\partial U_{x}}{\partial z}$ is actually a rotation
- So, the case of $\frac{\partial U_{z}}{\partial x}=\frac{\partial U_{x}}{\partial z}$ is called pure shear (no

To characterize deformation without rotations, only the symmetric combination of the elementary strains is used:

$$
\begin{aligned}
& \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right), \\
& \varepsilon_{i j}=\varepsilon_{i j}, \text { where } \mathrm{i}, \mathrm{j}=x, \mathrm{y}, \text { or } \mathrm{z}
\end{aligned}
$$

$$
\varepsilon=\left(\begin{array}{ccc}
\frac{\partial U_{x}}{\partial x} & \frac{1}{2}\left(\frac{\partial U_{x}}{\partial y}+\frac{\partial U_{y}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial U_{x}}{\partial z}+\frac{\partial U_{z}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial U_{y}}{\partial x}+\frac{\partial U_{x}}{\partial y}\right) & \frac{\partial U_{y}}{\partial y} & \frac{1}{2}\left(\frac{\partial U_{y}}{\partial z}+\frac{\partial U_{z}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial U_{z}}{\partial x}+\frac{\partial U_{x}}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial U_{z}}{\partial y}+\frac{\partial U_{y}}{\partial z}\right) & \frac{\partial U_{z}}{\partial z}
\end{array}\right)
$$

Dilatational Strain (relative volume change during deformation)

Original volume: $V=\delta x \delta y \delta z$
Deformed volume:
$V+\delta V=\left(1+\varepsilon_{x x}\right)\left(1+\varepsilon_{y y}\right)\left(1+\varepsilon_{z z}\right) \delta x \delta y \delta z$
Dilatational (volumetric) strain:

$$
\begin{gathered}
\Delta=\frac{\delta V}{V}=\left(1+\varepsilon_{x x}\right)\left(1+\varepsilon_{y y}\right)\left(1+\varepsilon_{z z}\right)-1 \approx \varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z} \\
\Delta=\varepsilon_{i i}=\partial_{i} U_{i}=\nabla_{i} U_{i}=\operatorname{div} \mathbf{U}
\end{gathered}
$$

Note that (as expected) shearing strain does not change the volume

Hooke's Law (general)

Describes the stress developed in a deformed body:

$$
\mathbf{F}=-k \mathbf{x} \text { for an ordinary spring (1-D) }
$$

$\sigma \sim \varepsilon$ (in some sense) for a 'linear', 'elastic' 3-D solid. This is what it means:

Nonlinear, Inelastic

- For a general (anisotropic) medium, there are 36 coefficients of proportionality between six independent $\sigma_{i j}$ and $\operatorname{six} \varepsilon_{i j}$

Hooke's Law (isotropic medium)

For isotropic medium, the strain/stress relation is described by just two constants:

$$
\begin{aligned}
\sigma_{i j} & =\lambda \Delta+2 \mu \varepsilon_{i j} \text { for normal strain/stress }(i=j, \text { where } i, j \\
& =x, y, z) \\
\sigma_{i j} & =2 \mu \varepsilon_{i j} \text { for shear components }(i \neq j) \\
& \lambda \text { and } \mu \text { are called the Lamé constants. }
\end{aligned}
$$

Four Elastic Moduli

Depending on boundary conditions (i.e., experimental setup) different combinations of λ and μ may be convenient. These combinations are called elastic constants, or moduli:

- Young's modulus and Poisson's ratio:
- Consider a cylindrical sample uniformly squeezed along axis X :

Four Elastic Moduli

Bulk modulus, K

- Consider a cube subjected to hydrostatic pressure

$$
\begin{aligned}
& \sigma_{x x}=\sigma_{y y}=\sigma_{z z}=-p, \\
& -3 p=3 \lambda^{\prime} \Delta+2 \mu \Delta
\end{aligned}
$$

Bulk modulus: $K=\frac{-p}{\Delta}=\lambda^{\prime}+\frac{2}{3} \mu$

Finally, the constant μ complements K in describing the shear rigidity of the medium, and thus it is also called 'rigidity modulus'

For rocks:

- Generally, $10 \mathrm{GPa}<\mu<K<E<200 \mathrm{GPa}$
- $0<v<1 / 2$ always; for rocks, $0.05<v<0.45$, for most "hard rocks", v is near 0.25

For fluids, $\nu=1 / 2$ and $\mu=0$ (no shear resistance)

Strain/Stress Energy Density

Mechanical work is required to deform an elastic body; as a result, elastic energy is accumulated in the strain/stress field

When released, this energy gives rise to earthquakes and seismic waves

For a loaded spring (1-D elastic body), $E=1 / 2 k x^{2}=1 / 2 F x$

Similarly, for a deformed elastic medium, energy density is:

$$
E=\frac{1}{2} \sum_{i, j=x, y, z} \sigma_{i j} \varepsilon_{i j}
$$

Energy density (per unit volume) is thus measured in:

$$
\left[\frac{\text { Newton } \times \mathrm{m}}{\mathrm{~m}^{3}}\right]=\left[\frac{\text { Newton }}{\mathrm{m}^{2}}\right]=[\mathrm{Pa}]
$$

Inhomogeneous Stress

If stress is
inhomogeneous (variable in space), its derivatives result in a net force acting on an infinitesimal volume:

$$
\begin{aligned}
F_{x} & =\left[\left(\sigma_{x x}+\frac{\partial \sigma_{x x}}{\partial x} \delta x\right)-\sigma_{x x}\right] \delta y \delta z \\
& +\left[\left(\sigma_{x y}+\frac{\partial \sigma_{x y}}{\partial y} \delta y\right)-\sigma_{x y}\right] \delta x \delta z \\
& +\left[\left(\sigma_{x z}+\frac{\partial \sigma_{x z}}{\partial z} \delta z\right)-\sigma_{x z}\right] \delta x \delta y=\left(\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z}\right) \delta y \delta y \delta z
\end{aligned}
$$

Thus, for $i=x, y, z: \quad F_{i}=\left(\frac{\partial \sigma_{i x}}{\partial x}+\frac{\partial \sigma_{i y}}{\partial y}+\frac{\partial \sigma_{i z}}{\partial z}\right) \delta V$

Equations of Motion

(Govern motion of the elastic body with time)

Uncompensated net force will result in acceleration (Newton's law):

$$
\begin{array}{lc}
\text { Newton's law: } \quad \rho \delta V \frac{\partial^{2} U_{i}}{\partial t^{2}}=F_{i} \\
\rho \frac{\partial^{2} U_{i}}{\partial t^{2}}=\left(\frac{\partial \sigma_{i x}}{\partial x}+\frac{\partial \sigma_{i y}}{\partial y}+\frac{\partial \sigma_{i z}}{\partial z}\right)
\end{array}
$$

$$
\begin{aligned}
& \rho \frac{\partial^{2} U_{x}}{\partial t^{2}}=\frac{\partial}{\partial x}\left(\lambda^{\prime} \Delta+2 \mu \frac{\partial U_{x}}{\partial x}\right)+\mu \frac{\partial}{\partial y}\left(\frac{\partial U_{x}}{\partial y}+\frac{\partial U_{y}}{\partial x}\right)+\mu \frac{\partial}{\partial z}\left(\frac{\partial U_{x}}{\partial z}+\frac{\partial U_{z}}{\partial x}\right) \\
& =\lambda^{\prime} \frac{\partial \Delta}{\partial x}+\mu \frac{\partial}{\partial x}\left(\frac{\partial U_{x}}{\partial x}+\frac{\partial U_{y}}{\partial y}+\frac{\partial U_{z}}{\partial z}\right)+\mu\left(\frac{\partial^{2} U_{x}}{\partial x^{2}}+\frac{\partial^{2} U_{x}}{\partial y^{2}}+\frac{\partial^{2} U_{x}}{\partial z^{2}}\right) \\
& =\left(\lambda^{\prime}+\mu\right) \frac{\partial \Delta}{\partial x}+\mu \nabla^{2} U_{x}
\end{aligned}
$$

These are the equations of motion for each of the
components of U:
$\rho \frac{\partial^{2} U_{x}}{\partial t^{2}}=\left(\lambda^{\prime}+\mu\right) \frac{\partial \Delta}{\partial x}+\mu \nabla^{2} U_{x}$
$\rho \frac{\partial^{2} U_{y}}{\partial t^{2}}=\left(\lambda^{\prime}+\mu\right) \frac{\partial \Delta}{\partial y}+\mu \nabla^{2} U_{y}$
$\rho \frac{\partial^{2} U_{z}}{\partial t^{2}}=\left(\lambda^{\prime}+\mu\right) \frac{\partial \Delta}{\partial z}+\mu \nabla^{2} U_{z}$

Wave Equation
 (Propagation of compressional/acoustic waves)

To show that these three equations describe several types of waves, first let's apply divergence operation to them:

$$
\rho \frac{\partial^{2} \Delta}{\partial t^{2}}=\left(\lambda^{\prime}+\mu\right) \nabla^{2} \Delta+\mu \nabla^{2} \Delta=\left(\lambda^{\prime}+2 \mu\right) \nabla^{2} \Delta
$$

- This is a wave equation; compare to the general form of equation describing wave processes:

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right] f(x, y, z, t)=0
$$

- Above, c is the wave velocity.

We have:

$$
\left[\frac{\rho}{\left(\lambda^{\prime}+2 \mu\right)} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right] \Delta=0
$$

This equation describes compressional (P) waves

$$
P \text {-wave velocity: } \quad v_{P}=\sqrt{\frac{\lambda+2 \mu}{\rho}}=\sqrt{\frac{K+\frac{4}{3} \mu}{\rho}}
$$

Wave Equation

(Propagation of shear waves)

Similarly, let's apply the curl operation to the equations for \mathbf{U} (remember, curl $(\mathbf{g r a d})=0$ for any field:

$$
\rho \frac{\partial^{2}}{\partial t^{2}} \operatorname{curl} \mathbf{U}=\mu \nabla^{2} \operatorname{curl} \mathbf{U}
$$

This is also a wave equation; again compare to the general form:

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right] f(x, y, z, t)=0
$$

- This equation describes shear (S), or transverse waves.
- Since it involves rotation, there is no associated volume change, and particle motion is across the wave propagation direction.

Its velocity: $V_{S}<V_{P}$,

$$
\text { For } v=0.25, \frac{V_{P}}{V_{S}}=\sqrt{3}
$$

$$
V_{S}=\sqrt{\frac{\mu}{\rho}}
$$

Wave Polarization

Thus, elastic solid supports two types of body

 waves:

$$
v_{P}=\sqrt{\frac{\lambda+2 \mu}{\rho}}=\sqrt{\frac{K+\frac{4}{3} \mu}{\rho}}, \quad v_{S}=\sqrt{\frac{\mu}{\rho}}
$$

Waveforms and

wave fronts

Plane waves

Consider the wave equation:

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right] f(x, y, z, t)=0
$$

Why does it describe a wave? Note that it is satisfied with any function of the form:

$$
f(x, y, z, t)=\varphi(x-c t)
$$

$$
t(x, y, z, t)=\varphi(x+c t)
$$

The function $\varphi()$ is the waveform. Note that the entire waveform propagates with time to the right or left along the x -axis, $x= \pm c t$. This is what is called the wave process.
The argument of $\varphi(\ldots)$ is called phase
Surfaces of constant phase are called wavefronts
\checkmark In our case, the wavefronts are planes:
$x=$ phase $\pm c t$ for any (y, z).

- For this reason, the above solutions are plane waves

Waveforms and wave fronts
 Non-planar waves

The wave equation is also satisfied by such solutions (spherical waves):

$$
f(\mathbf{r}, t)=\frac{1}{|\mathbf{r}|} \phi(|\mathbf{r}|-c t)
$$

Spreading away from point $\mathbf{r}=0$

$$
f(\mathbf{r}, t)=\frac{1}{|\mathbf{r}|} \phi(|\mathbf{r}|+c t)
$$

Converging to $\mathbf{r}=0$
...and by such (cylindrical waves):

$$
\begin{array}{r}
f(\rho, t)=\frac{1}{\sqrt{\rho}} \phi(\rho-c t) \\
\text { Spreading away from } \rho=0
\end{array} \begin{array}{r}
f(\rho, t)=\frac{1}{\sqrt{\rho}} \phi(\rho+c t) \\
\text { Converging to } \rho=0
\end{array}
$$

...and by various other solutions

> Question: what is the problem with the second solution in each pair?

Waves and sources

Homogeneous wave equation describes free waves:

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2} t}-\nabla^{2}\right) f=0
$$

- plane, spherical, cylindrical...
- incoming, outgoing...

Inhomogeneous equation describes waves generated by a source:

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2} t}-\nabla^{2}\right) f=\text { source }
$$

Note that this also includes all of the free waves, and so one also needs boundary conditions to specify a unique solution

- For example, no waves usually come from infinity toward the source (this is called the "radiation condition")

