Reflection Seismic Method

- Reflection images
- Zero-Offset reflection section
- Seismic Impedance
- Depth and horizontal resolution
- 2-D field acquisition geometries
- Noise (wave) tests
- Data and Image sort orders
- Common mid-point (CMP) binning and "fold"
- Stacking charts
- Normal Moveout (NMO) and correction for it
- Stacking
- Migration
- Tying reflections to well logs

Reading:

- » Reynolds, Chapter 6
- > Shearer, 7.1-7.5
- > Telford et al., Sections 4.3, 4.7, 4.8, 4.10

Reflection seismic imaging

- The goal of reflection seismic work consists in obtaining (distance, depth) or (distance, time) (or similar 3D) images like shown below
- The procedure for obtaining such images involves numerous transformations and filtering operations
- <u>Key concepts involved in these transformations</u> are discussed in the following slides

Distance or 2D coordinates on the surface

Source-receiver

Zero-Offset Section (The goal of reflection seismic imaging)

The "ideal" case of reflection imaging Datum consists in *sources* and receivers *collocated* on a flat horizontal surface (called "*datum*") **Statics** However, in reality, we compensate these have to record at source-receiver offsets, The Source and Receiver are neither coincident and over complex nor on the datum ΔT_s surface topography Datum NMO corrects Two types of data for these transformations are applied to compensate for these factors: datum;

- coincident on datum х mid-point R ΔT_{R} х T_x
- Statics "place" sources and receivers onto the
- Normal Moveout Corrections "transform" the records into as if they were recorded at collocated sources and receivers.

Reflection coefficient

Physical property imaged in reflection sections

- At near-normal incidence:
 - *P*-to-*S*-wave conversions are negligible
 - *P*-wave reflection and transmission *amplitudes* are determined by the contrast in *acoustic impedance* Z= \rho V (see next page)
- *P* and *S*-wave *reflection* amplitudes usually *vary with incidence angles*

Acoustic Impedance

- Reflection-coefficient relations follow from physical reasons:
 - 1) continuity of displacement, and
 - 2) conservation of energy upon wave reflection or transmission
- Acoustic impedance measures the energy flux within the wave: $Q_{1} = Q_{2}$

$$E_{flux} = VE_{density} = V\frac{\rho}{2}(\omega A)^2 = \frac{\omega}{2}\rho VA^2$$

Kinetic energy

P-wave Reflection Coefficient

$$R_{PP} = \frac{A_{P_{\text{reflected}}}}{A_{P_{\text{incident}}}} = \frac{Z_2 - Z_1}{Z_2 + Z_1} \checkmark \qquad \text{This means polarity reversal upon reflection}$$

P-wave Transmission Coefficient

$$T_{PP} = 1 - R_{PP} = \frac{2Z_1}{Z_1 + Z_2}$$

This follows from the continuity of displacement across the boundary

Acoustic Impedance Typical values for rocks

ULTRAMAFIS MAFIC SILICIC SEDIMENTS 15 10

Density

From Salisbury, 1996

Impedance units in boxes are rather peculiar but convenient:

$$[Impedance] = \left[\frac{g}{cm^3}\right] \left[\frac{km}{s}\right]$$
$$Z \quad \rho \quad V$$

S = R

Spatial resolution of reflectors

- Two points are considered unresolvable when their reflection travel times are separated by less than *half the dominant period* of the signal: $\delta t < T/2$.
- Therefore,

vertical resolution:

$$\delta z = PP_1 = \frac{\lambda}{4}$$

Note that *horizontal resolution decreases with depth*.

$$\delta z = PP_1 = \frac{\pi}{4}$$
• horizontal resolution:

$$\delta x = PP_2 = \sqrt{\left(H + \frac{\lambda}{4}\right)^2 - H^2} \approx \sqrt{\frac{1}{2}H\lambda}$$
H
This is called
Fresnel Zone radius
$$P_2$$

$$P_1$$

Vertical resolution example

Faults with different amounts of vertical throws, compared to the dominant wavelength:

λ/16	λ/8	λ/4	λ/2	λ.
		and the same the same age		
[2		2 N
			10	

VVVV

Shot (field) and Common-Midpoint (image) <u>data sort orders</u>

• Common-Midpoint survey:

- Helps in reduction of random noise and multiples via *redundant coverage* of the subsurface;
- Ground roll is attenuated through the use of geophone arrays.

Field geometry survey and observer's logs, "chaining notes"

- Survey file
 - Produced by surveyors (usually comes out of GPS unit);
- Observer's Notes
 - A record of shooting and recording sequence
 - Lists shot positions, record ("field file") numbers (FFIDs), spread positions ("first live station");
 - Records weather, interruptions, usual and unusual noise, state of recording system.

Noise (Wave) Test

Conducted prior to the acquisition in order to evaluate the appropriate survey design

- Offset range;
- Noise (ground roll, airwave) characteristics;
- Offset range for useful reflections.

Inner traces

Stacking chart

Visualization of mutual positions of sources and receivers

CMP Fold number

- "Fold" is the Number of records per CMP
 - Should be optimal (typically, 10-40);
- Should be uniform (this is particularly an issue with 3D).

 $Fold = \frac{\text{Number of recording channels}}{2(\text{Number of Shot point advances by Receiver spacing})}$

Crooked-line binning

- Real seismic lines are often "crooked"
- CMP bins are then defined for an averaged, smooth line of midpoints

Statics

- Statics are time shifts associated with source (Δt_S) and receiver (Δt_R) positions
 - When subtracted ('*applied*') from the travel-times, place the source and receiver on a common datum.
 - (*Field statics*) = (*Elevation Correction*) + (*Weathering Correction*);
 - Elevation correction 'moves' the source and geophone to a common datum surface;
 - Weathering correction removes the effect of slow (~600 m/s) unconsolidated layer.
 - Obtained from *first arrivals*, using the plus-minus, GRM, or similar methods.
- Where field statics are not accurate enough, *residual statics* are also applied.

Elevation statics: $\Delta t_{s} = \frac{E_{s} - D_{s} - E_{d}}{V}$ $\Delta t_G = \Delta t_S + t_{uphole}$

Effects of statics in shot gathers

Note that good static corrections are VERY important for producing good reflection images

Effects of statics in stacked image

Reflection travel times (Single layer)

Reflection travel times (*Multiple layers*)

For multiple layers, t(x) is no longer hyperbolic:

For practical applications (near-vertical incidence, $pV_i \ll 1$), t(x) still can be approximated as:

$$x_{n}(p) = \sum_{i=1}^{n} \frac{h_{i} p V_{i}}{\sqrt{1 - (pV_{i})^{2}}} \approx p \sum_{i=1}^{n} h_{i} V_{i} \left[1 + \frac{1}{2} (pV_{i})^{2} \right] \approx p \sum_{i=1}^{n} h_{i} V_{i}$$

hence: $p = \frac{x_n}{\sum_{i=1}^n h_i V_i}$ $t_n(p) = \sum_{i=1}^n \frac{h_i}{V_i \sqrt{1 - (pV_i)^2}} \gg \sum_{i=1}^n \frac{h_i}{V_i} \left[1 + \frac{1}{2} (pV_i)^2 \right] = t_0 + \frac{1}{2} p^2 \sum_{i=1}^n h_i V_i$ $t_n(x) \approx t_0 + \frac{1}{2t_0} \left(\frac{x}{V_{RMS}} \right)^2$ where V_{RMS} is the RMS (root-mean-square) velocity: $V_{RMS} = \sqrt{\frac{\sum_{i=1}^n h_i V_i}{t_0}} = \sqrt{\frac{\sum_{i=1}^n t_i V_i^2}{\sum_{i=1}^n t_i}}$

Dipping reflector

For a dipping reflector, the image is *smeared up-dip* and the stacking velocity is *over-estimated*.

Measurement of velocities (Velocity analysis)

- Reflection (*stacking*) velocity analysis is usually performed in CMP gathers
 - because they pertain to specific locations within the subsurface.
- <u>Travel-time</u> approach T^2 - X^2 method: $t^2(x^2)$ is a linear function. Slope of the graph in $t^2(x^2)$ diagram is $(1/V_{\text{Stacking}})^{2}$.
 - <u>Waveform</u> approach (*velocity spectrum* and *common velocity stacks* (*CVS*))
 - stack the records along trial reflection hyperbolas;
 - plot the resulting amplitude in a (*time*, V_{trial}) diagram;
 - pick amplitude peaks this results in a V(time) profile.

Velocity Spectra

CMP gathers are stacked along trial velocities and presented in time-velocity diagrams.

Common-Velocity Stacks (Velocity analysis)

CMP gathers are NMO-corrected (hyperbolas flattened) using a range of trial velocities and stacked.

Velocities are picked at the amplitude peaks and best resolution in the stacks.

Normal Moveout (NMO) correction

NMO correction transforms a reflection record at offset *x* into a normal-incidence (x = 0) record:

$$t(x) \rightarrow t_0 = t(x) - \delta t_{NMO}$$
$$\delta t_{NMO} = \sqrt{t^2 - \left(\frac{x}{V}\right)^2} - t_0 \approx \frac{1}{2t} \left(\frac{x}{V}\right)^2$$

'Stacking velocity''

Stacking velocity is determined from the data, as a parameter of reflection hyperbola which is best aligned with the observed reflection

NMO stretching

- NMO correction affects the shallower and slower reflections stronger
 - This is called "NMO stretch"
 - There is a considerable effort in creating "nonstretching" NMO algorithms

Exercise: derive the sensitivities of NMO correction to δt , δV , and δx :

 $\partial (\delta t_{NMO}) / \partial t, \ \partial (\delta t_{NMO}) / \partial V, \ \partial (\delta t_{NMO}) / \partial x.$

Migration

- A simplified variant of 'inversion'
 - Transforms the 'time section' into true 'depth image'
- Establishes true positions and dips of reflectors
- Collapses diffractions

Use of modeling

_

GEOL 335.3

Use of synthetic seismograms Synthetics with principal multiples Synthetics is spliced into CMP section for comparison 1.5 (0) 2.0 2.5

