Time and Spatial Series

- Data and Transform domains

Z- and Fourier Transforms

- Reading:
- Shearer, A5
, Telford et al., Sections 4.7.2-6, A. 9

Data Representation 'Domains'

- Data domain:

- Domain in which data are acquired.
- Examples: Output of a geophone as a function of time, value of gravity at a point on a spatial grid
- Time or space

Transform domains:

- Transformed for interpretation and understanding of certain aspects of the record as a whole.
- Frequency, 'wave number', velocity, etc....

There are numerous transforms for continuous and discrete signal...

- We are interested in discrete, numerical transforms

Z-Transform

Consider a digitized record that is represented by a series of N readings: $U=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{N-1}\right\}$
How can we represent this series differently?
The Z transform associates a polynomial function with this time series:

$$
U(z)=u_{0}+u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\ldots
$$

- For example, a 3-sample record of $\{1,2,5\}$ is represented by a quadratic polynomial:

$$
1+2 z+5 z^{2}
$$

- In the Z-domain, the all-important operation of convolution of time series becomes simple multiplication of Z-transforms:

$$
U_{1} * U_{2} \Leftrightarrow U_{1}(z) U_{2}(z)
$$

- We will return to this during the discussion of convolution.

Fourier Transform

- Time series represent the signal as a sum of basis functions - triangular pulses localized in time:

9.65989, 0.495026
- Fourier transform represents the signal as a sum of $\sin (\ldots), \cos (. .$.$) , or complex \exp (\ldots)$ basis functions with different frequencies:

10.3939, 8.91084

Summary of Forward and Inverse Fourier Transforms

- Forward Fourier Transform (from time to frequency domain):

$$
\begin{equation*}
U_{k}=\sum_{m=0}^{N-1} e^{-i \frac{2 \pi k}{N} m} u_{m} \tag{1}
\end{equation*}
$$

frequency $f=k \Delta f \quad$ time $t=m \Delta t$
The Inverse Fourier Transform (from frequency to tine domain) is given by a similar formula:

$$
\begin{equation*}
u_{j}=\frac{1}{N} \sum_{k=0}^{N-1} e^{i \frac{2 \pi k}{N} j} U_{k} \tag{2}
\end{equation*}
$$

time $t=j \Delta t$
frequency $f=k \Delta f$

$$
\Delta t=\frac{T}{N}=\frac{1}{f_{s}}
$$

$$
\Delta f=\frac{f_{s}}{N}=\frac{1}{T}
$$

Exercise: Prove this (plug (1) in (2) above)

Nyquist frequency

Recall the frequency folding and aliasing phenomena we discussed before
These phenomena are simply due to the fact that the time-domain signal $u(t)$ is real-valued, but the frequency-domain $U(f)$ is complex-valued.

- This means that the $\left\{U_{k}\right\}$ series contain twice more numbers than $\left\{u_{j}\right\}$
- Therefore, half of the values in $\left\{U_{k}\right\}$ must always be related to the other half. This is how they are related (this is the frequency folding):

$$
U\left(f_{s}-f\right)=U^{*}(f)
$$

Thus, it is sufficient to know $U(f)$ only up to Nyquist frequency

$$
f_{N}=\frac{f_{s}}{2}=\frac{N}{2} \Delta f=\frac{1}{2 \Delta t}
$$

At $f>f_{N}$, the spectrum $U(f)$ is a "conjugate mirror image" of the spectrum below f_{N}

Spectra

- In frequency domain, the signal $U(f)$ becomes complex-valued, and it varies with frequencies rather than times:

$$
u(t) \Rightarrow U(f)=A(f) e^{i \theta(f)}
$$

- $A(f)$ is called the amplitude spectrum, and $\theta(f)$ is the phase spectrum of the signal.
- $A(f)$ shows the amplitude of the particular harmonic component of the record, and $\theta(f)$ shows its relative phase
$A(f)$ is measured in the same units as the amplitude, and $\theta(f)$ is dimensionless (or radians, often also expressed in degrees: $180^{\circ}=\pi$).

Sample Fourier Transforms

Compare the transforms in the boxes

(a)

Spectra of Pulses

For a pulse of width $T \mathrm{~s}$, its spectrum is about $1 / T \mathrm{~Hz}$ in width:

tIME (MSEC)
TIME (MSECI
\square

FREQUENCY (HZ) FREQUENCY (HZ)
Equal-amplitude (co)sinusoids from 0 to f_{N} add up to form a spike:

Fast Fourier Transform

- The Fast Fourier Transform (FFT) is an efficient algorithm to compute the Fourier transforms It works with a series of N samples that can be efficiently factorized in terms of prime factors. The best-known, classic FFT uses $N=2^{n}$.
FFT utilizes trigonometric relations such as:

$$
e^{-i 2 \alpha}=\left(e^{-i \alpha}\right)^{2}
$$

- Therefore, the sums computed for frequency f can be utilized to compute the FFT's at frequency $2 f$, and so on.
- As a result, FFT computes all frequency points in $\sim N \log _{2} N$ steps instead of N^{2}
- ~ 10 times speedup for $N=1024$

