Elasticity and Seismic Waves

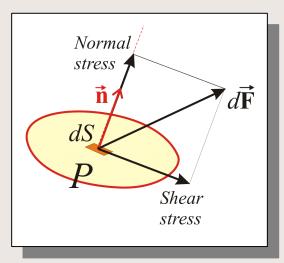
- Concepts of macroscopic mechanics of solids
- Rock as 'elastic continuum'
 - Elastic body is deformed in response to stress
 - Two types of deformation (strain): Changes in volume and shape
- Equations of motion
- Wave equations
- Plane and spherical waves
 - Reading:
 - > Shearer, Sections 2, 3
 - > Telford et al., Section 4.2.

Mechanical properties of continuous solids (or fluids)

- In seismic waves, we consider only small deformations (one part out million or less)
 - → Particles only oscillate slightly near equilibrium points, and the behaviour of fluids/gases is similar to solids
- I try explaining mechanics of continuous solid media through analogies with a mass suspended on a spring:
 - Mass of the body m is analogous to density ρ
 - Force vector **F** is analogous to stress tensor σ
 - Extension of the spring \mathbf{x} to strain tensor $\boldsymbol{\varepsilon}$
 - Hooke's law $\mathbf{F} = -k\mathbf{x}$ to Hooke's law for solids
 - \bullet Elastic constant k to elastic "moduli" for solids
 - Newton's law $m\mathbf{a} = \mathbf{F}$ also applies in both cases
 - ◆ Oscillations of mass *m* correspond to <u>waves</u> and multiple forms of <u>free oscillations</u> of solid bodies
- In the following slides, we go through these concepts one by one

Stress

• Consider the interior of a deformed body:



At point P, force $d\mathbf{F}$ acts on any infinitesimal area dS

d**F** is proportional to dS (shown on the next slide)

Stress, with respect to direction **n**, is a vector equal:

 $\lim (d\mathbf{F}/dS)$ (as $dS \to 0$)

- Stress is measured in [Newton/m²], or Pascal
 - Note that this is a <u>unit of pressure</u>
- $d\mathbf{F}$ can be decomposed in two components relative to the surface or \mathbf{n} :
 - Orthogonal to the surface (parallel to n; this called normal stress)
 - Tangential to the surface (shear stress)

Stress

- Stress, in general, is a *tensor*:
 - It is described in terms of 3 force components acting across each of 3 mutually orthogonal surfaces
 - 6 independent parameters
 - Force $d\mathbf{F}/dS$ depends on the orientation \mathbf{n} , but stress does not
 - Stress is best described by a matrix:

$$\begin{pmatrix} dF_{x} \\ dF_{y} \\ dF_{z} \end{pmatrix} = dS \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \begin{pmatrix} n_{x} \\ n_{y} \\ n_{z} \end{pmatrix},$$

$$\sigma_{xy} = \sigma_{yx},$$

$$\sigma_{xy} = \sigma_{xz},$$

$$\sigma_{xz} = \sigma_{zx},$$

$$\sigma_{yz} = \sigma_{zy}$$

$$\sigma_{yz} = \sigma_{zy}$$

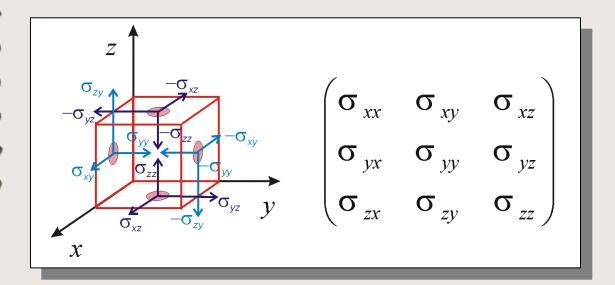
$$\sigma_{xy} = \sigma_{zy}$$
Normal stress components
$$\sigma_{xz} = \sigma_{zx},$$

$$\sigma_{yz} = \sigma_{zy}$$
are symmetric

• In a continuous medium, stress depends on (x,y,z,t) and thus it is a *field*

Forces acting on a small cube

- Consider a small cube within the elastic body. Assume dimensions of the cube equal '1'
- Both the *forces* and *torque* acting on the cube from the outside are balanced:



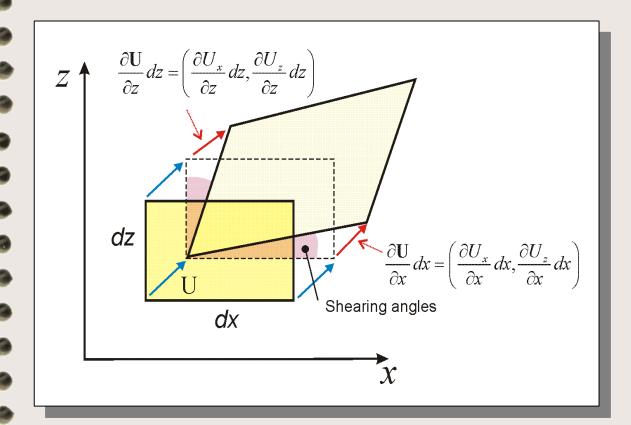
- In consequence, the stress tensor is *symmetric*: $\sigma_{ij} = \sigma_{ji}$
- The stress tensor is given by just <u>6 independent</u> parameters out of 9

Strain within a deformed body

- Strain is a measure of deformation, *i.e.*, *variation of relative displacement* as associated with a *particular direction* within the body
 - It is, therefore, also a *tensor*
 - Represented by a matrix
 - Like stress, it is decomposed into normal and shear components
 - Seismic waves yield strains of 10⁻¹⁰-10⁻⁶
 - So we rely on infinitesimal strain theory

Elementary Strain

- When a body is deformed, *displacements* (\mathbf{U}) of its points are dependent on (x,y,z), and consist of:
 - Translation (blue arrows below)
 - Deformation (red arrows)
- Elementary strain is simply $e_{ij} = \frac{\partial U_i}{\partial x_i}$



Strain Components

However, certain forms of U(x,y,z) dependencies correspond to simple rotations of the body without changing its shape:

- Deformation in which $\frac{\partial U_z}{\partial x} = -\frac{\partial U_x}{\partial z}$ is actually a rotation about the 'y' axis.
- So, the case of $\frac{\partial U_z}{\partial x} = \frac{\partial U_x}{\partial z}$ is called *pure shear* (no rotation)

To characterize <u>deformation without rotations</u>, only the <u>symmetric combination</u> of the elementary strains is used:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right),$$

$$\varepsilon_{ij} = \varepsilon_{ji}, \text{ where i, j} = x, y, \text{ or z}$$

$$\varepsilon = \begin{pmatrix} \frac{\partial U_x}{\partial x} & \frac{1}{2} \left(\frac{\partial U_x}{\partial y} + \frac{\partial U_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial U_x}{\partial z} + \frac{\partial U_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial U_y}{\partial x} + \frac{\partial U_x}{\partial y} \right) & \frac{\partial U_y}{\partial y} & \frac{1}{2} \left(\frac{\partial U_y}{\partial z} + \frac{\partial U_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial U_z}{\partial x} + \frac{\partial U_x}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial U_z}{\partial y} + \frac{\partial U_y}{\partial z} \right) & \frac{\partial U_z}{\partial z} \end{pmatrix}$$

Dilatational Strain (relative volume change during deformation)

- Original volume: $V = \delta x \delta y \delta z$
- Deformed volume:

$$V + \delta V = (1 + \varepsilon_{xx})(1 + \varepsilon_{yy})(1 + \varepsilon_{zz})\delta x \delta y \delta z$$

Dilatational (volumetric) strain:

$$\Delta = \frac{\delta V}{V} = (1 + \varepsilon_{xx})(1 + \varepsilon_{yy})(1 + \varepsilon_{zz}) - 1 \approx \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$
$$\Delta = \varepsilon_{ii} = \partial_i U_i = \nabla_i U_i = \text{div } \mathbf{U}$$

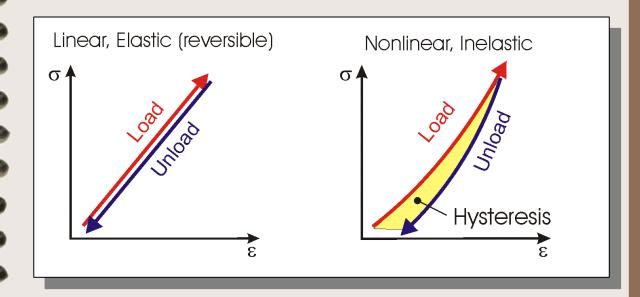
 Note that (as expected) shearing strain does not change the volume

Hooke's Law (general)

Describes the stress developed in a deformed body:

 $\mathbf{F} = -k\mathbf{x}$ for an ordinary spring (1-D)

 $\sigma \sim \varepsilon$ (in some sense) for a 'linear', 'elastic' 3-D solid. This is what it means:



For a general (*anisotropic*) medium, there are 36 coefficients of proportionality between six independent σ_{ij} and six ε_{ij}

Hooke's Law (isotropic medium)

For <u>isotropic</u> medium, the strain/stress relation is described by just two constants:

$$\sigma_{ij} = \lambda \Delta + 2\mu \varepsilon_{ij}$$
 for normal strain/stress ($i=j$, where $i,j = x,y,z$)

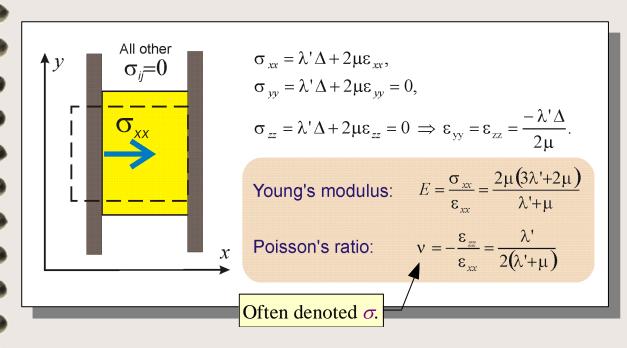
 $\sigma_{ij} = 2\mu\varepsilon_{ij}$ for shear components $(i\neq j)$

• λ and μ are called the *Lamé constants*.

Empirical Elastic Moduli

Young's (extensional) modulus and Poisson's ratio

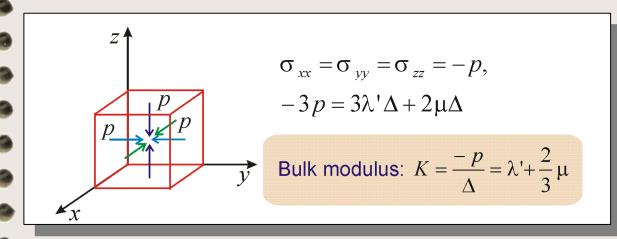
- Lamé modulus λ practically never acts alone or is observed in experiments
- Depending on boundary conditions (*i.e.*, experimental setup), combinations of λ and μ are measured. These combinations are called *elastic constants*, or moduli:
 - Young's modulus and Poisson's ratio:
 - Consider a cylindrical sample uniformly squeezed or stretched along axis *X*:



Empirical Elastic Moduli

Bulk and **Shear**

- Bulk modulus, *K*
 - Consider a cube subjected to hydrostatic pressure



- Finally, the constant μ complements K in describing the shear rigidity of the medium, and thus it is also called '*rigidity modulus*'
- For rocks:
 - Generally, 10 GPa $< \mu < K < E < 200$ GPa
 - $0 < v < \frac{1}{2}$ always; for rocks, 0.05 < v < 0.45, for most "hard rocks", v is near 0.25
- For fluids, $v=\frac{1}{2}$ and $\mu=0$ (no shear resistance)

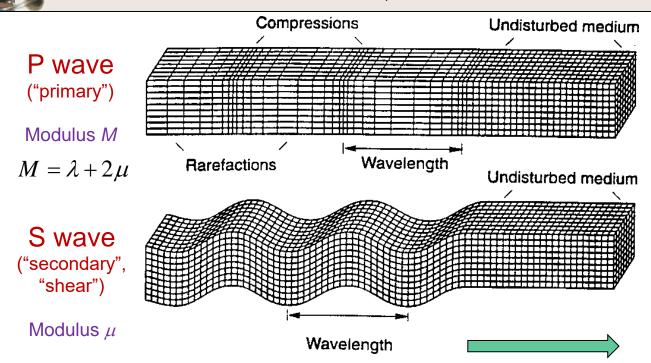
Empirical Elastic Moduli

P-wave and S-wave

From seismic waves, another pair of empirical moduli is obtained <u>from measured wave velocities</u>:

$$V_P = \sqrt{\frac{M}{
ho}}$$
 $V_S = \sqrt{\frac{\mu}{
ho}}$

- "P-wave modulus" M corresponds to compressionextension deformations in one direction only
- "S wave modulus" corresponds to shear deformations (without volume change) transversely to wave propagation
 - \bullet This modulus is the same as μ



Strain/Stress Energy Density

- Mechanical work is required to deform an elastic body; as a result, elastic energy is accumulated in the strain/stress field
- When released, this energy gives rise to earthquakes and seismic waves
- For a loaded spring (1-D elastic body), $E = \frac{1}{2}kx^2 = \frac{1}{2}Fx$
- Similarly, for a deformed elastic medium, *energy density* is:

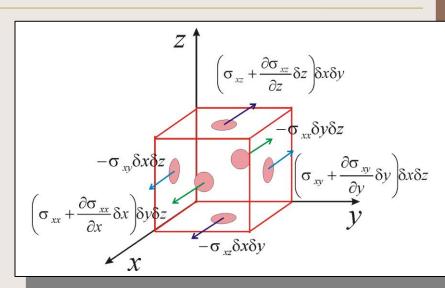
$$E = \frac{1}{2} \sum_{i, j=x, y, z} \sigma_{ij} \varepsilon_{ij}$$

• Energy density (per unit volume) is thus measured in:

$$\left\lceil \frac{\text{Newton} \times \text{m}}{\text{m}^3} \right\rceil = \left\lceil \frac{\text{Newton}}{\text{m}^2} \right\rceil = \left\lceil \text{Pa} \right\rceil$$

Inhomogeneous Stress

If stress is inhomogeneous (variable in space), its derivatives result in a *net force* acting on an infinitesimal volume:



$$F_{x} = \left[\left(\sigma_{xx} + \frac{\partial \sigma_{xx}}{\partial x} \delta x \right) - \sigma_{xx} \right] \delta y \delta z$$

$$+ \left[\left(\sigma_{xy} + \frac{\partial \sigma_{xy}}{\partial y} \delta y \right) - \sigma_{xy} \right] \delta x \delta z$$

$$+ \left[\left(\sigma_{xz} + \frac{\partial \sigma_{xz}}{\partial z} \delta z \right) - \sigma_{xz} \right] \delta x \delta y = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} \right) \delta y \delta y \delta z$$

Thus, for
$$i = x, y, z$$
:
$$F_i = \left(\frac{\partial \sigma_{ix}}{\partial x} + \frac{\partial \sigma_{iy}}{\partial y} + \frac{\partial \sigma_{iz}}{\partial z}\right) \delta V$$

Equations of Motion

(Govern motion of the elastic body with time)

Uncompensated net force will result in *acceleration* (Newton's law):

Newton's law:
$$\rho \delta V \frac{\partial^2 U_i}{\partial t^2} = F_i$$
$$\rho \frac{\partial^2 U_i}{\partial t^2} = \left(\frac{\partial \sigma_{ix}}{\partial x} + \frac{\partial \sigma_{iy}}{\partial y} + \frac{\partial \sigma_{iz}}{\partial z} \right)$$

$$\rho \frac{\partial^{2} U_{x}}{\partial t^{2}} = \frac{\partial}{\partial x} \left(\lambda' \Delta + 2\mu \frac{\partial U_{x}}{\partial x} \right) + \mu \frac{\partial}{\partial y} \left(\frac{\partial U_{x}}{\partial y} + \frac{\partial U_{y}}{\partial x} \right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial U_{x}}{\partial z} + \frac{\partial U_{z}}{\partial x} \right)$$

$$= \lambda' \frac{\partial \Delta}{\partial x} + \mu \frac{\partial}{\partial x} \left(\frac{\partial U_{x}}{\partial x} + \frac{\partial U_{y}}{\partial y} + \frac{\partial U_{z}}{\partial z} \right) + \mu \left(\frac{\partial^{2} U_{x}}{\partial x^{2}} + \frac{\partial^{2} U_{x}}{\partial y^{2}} + \frac{\partial^{2} U_{x}}{\partial z^{2}} \right)$$

$$= (\lambda' + \mu) \frac{\partial \Delta}{\partial x} + \mu \nabla^{2} U_{x}$$

These are the equations of motion for each of the components of U:

$$\rho \frac{\partial^{2} U_{x}}{\partial t^{2}} = (\lambda' + \mu) \frac{\partial \Delta}{\partial x} + \mu \nabla^{2} U_{x}$$

$$\rho \frac{\partial^{2} U_{y}}{\partial t^{2}} = (\lambda' + \mu) \frac{\partial \Delta}{\partial y} + \mu \nabla^{2} U_{y}$$

$$\rho \frac{\partial^{2} U_{z}}{\partial t^{2}} = (\lambda' + \mu) \frac{\partial \Delta}{\partial z} + \mu \nabla^{2} U_{z}$$

Wave Equation

(Propagation of compressional/acoustic waves)

• To show that these three equations describe several types of waves, first let's apply *divergence* operation to them:

$$\rho \frac{\partial^2 \Delta}{\partial t^2} = (\lambda' + \mu) \nabla^2 \Delta + \mu \nabla^2 \Delta = (\lambda' + 2\mu) \nabla^2 \Delta$$

• This *is* a wave equation; compare to the general form of equation describing wave processes:

$$\left[\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right] f(x, y, z, t) = 0$$

- Above, c is the wave velocity.
 - We have:

$$\left[\frac{\rho}{(\lambda'+2\mu)}\frac{\partial^2}{\partial t^2} - \nabla^2\right]\Delta = 0$$

- This equation describes *compressional* (*P*) waves
- *P*-wave velocity:

$$v_P = \sqrt{\frac{\lambda + 2\mu}{\rho}} = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$

Wave Equation

(Propagation of shear waves)

• Similarly, let's apply the *curl operation* to the equations for **U** (remember, **curl**(**grad**) = 0 for any field:

$$\rho \frac{\partial^2}{\partial t^2} \operatorname{curl} \mathbf{U} = \mu \nabla^2 \operatorname{curl} \mathbf{U}$$

• This is also a wave equation; again compare to the general form:

$$\left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right] f(x, y, z, t) = 0$$

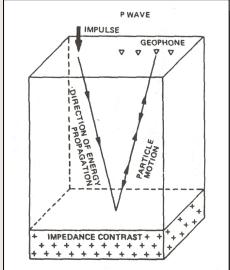
- This equation describes *shear* (*S*), or *transverse* waves.
- Since it involves rotation, there is no associated volume change, and particle motion is *across* the wave propagation direction.
- Its velocity: $V_S < V_P$,

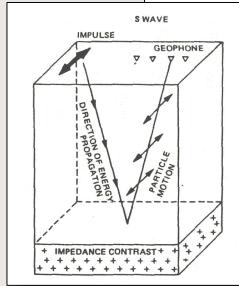
• For
$$v = 0.25$$
, $\frac{V_P}{V_S} = \sqrt{3}$

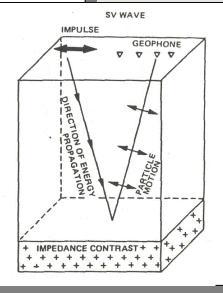
$$V_S = \sqrt{\frac{\mu}{\rho}}$$

Wave Polarization

• Thus, elastic solid supports two types of *body* waves:







$$v_P = \sqrt{\frac{\lambda + 2\mu}{\rho}} = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$
, $v_S = \sqrt{\frac{\mu}{\rho}}$

Waveforms and wave fronts

Plane waves

Consider the wave equation:

$$\left[\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right] f(x, y, z, t) = 0$$

Why does it describe a wave? Note that it is satisfied with any function of the form:

$$f(x, y, z, t) = \varphi(x - ct)$$

$$f(x, y, z, t) = \varphi(x + ct)$$

$$f(x, y, z, t) = \varphi(x + ct)$$

- The function $\varphi()$ is the waveform. Note that the entire waveform propagates with time to the right or left along the x-axis, $x=\pm ct$. This is what is called the wave process.
- The argument of $\varphi(...)$ is called *phase*
- Surfaces of constant phase are called wavefronts
 - In our case, the wavefronts are planes:

$$x = \text{phase } \pm ct$$
 for any (y,z) .

For this reason, the above solutions are plane waves

Waveforms and wave fronts

Non-planar waves

• The wave equation is also satisfied by such solutions (*spherical waves*):

$$f(\mathbf{r},t) = \frac{1}{|\mathbf{r}|} \phi(|\mathbf{r}| - ct)$$

$$f(\mathbf{r},t) = \frac{1}{|\mathbf{r}|} \phi(|\mathbf{r}| + ct)$$

Spreading away from point $\mathbf{r} = 0$

Converging to $\mathbf{r} = 0$

...and by such (cylindrical waves):

$$f(\rho,t) = \frac{1}{\sqrt{\rho}}\phi(\rho - ct)$$

$$f(\rho,t) = \frac{1}{\sqrt{\rho}}\phi(\rho+ct)$$

Spreading away from $\rho = 0$

Converging to $\rho = 0$

...and by various other solutions

Question: what is the problem with the second solution in each pair?

Waves and sources

Homogeneous wave equation describes free waves:

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial^2 t} - \nabla^2\right)f = 0$$

- plane, spherical, cylindrical...
- incoming, outgoing...
- Inhomogeneous equation describes waves generated by a source:

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial^2 t} - \nabla^2\right)f = source$$

- Note that this also includes all of the free waves, and so one also needs boundary conditions to specify a unique solution
 - → For example, no waves usually come from infinity toward the source (this is called the "radiation condition")