
Reflection Seismic Processing

- Objective transform <u>redundant</u> reflection seismic records in the *time domain* into an interpretable *depth image*
 - Data reduction and editing
 - Transformation into conveniently computermanageable form;
 - Removal of bad records
 - Gathering
 - CMP sorting
 - Filtering in time and space
 - Attenuation of noise
 - Imaging
 - Final velocity and reflectivity image

A seismic line processed by different contractors

Seismic Processing Systems

- Reflection seismic processing requires highperformance processing systems:
 - Millions of data records, complex databases
 - Hundreds of tools applied in sequences
 - Interactive and "batch" processing steps
- Usually geared to a particular type of application
 - Mostly CMP reflection processing, but sometimes "wide-angle" and earthquake
 - Land or marine, 2D or 3D

Commercial:

- ProMAX (Landmark);
- Omega (Western Geophysical, marine);
- Focus (Paradigm);
- Amoco and almost every other company have their own..
- Vista (Seismic Image Soft.).

Open-source/Universities:

- Stanford Exploration Project;
- Seismic UNIX (Colorado School of Mines);
- FreeUSP (Amoco);
- SIOSEIS (Scrippts institution for Oceanography, marine, not free!);
- I. Morozov's very own:

http://seisweb.usask.ca/igeos

Seismic data formats SEG-Y

- Many seismic data formats are similar, and include:
 - <u>Text file header</u> (comments for the user, line description);
 - Binary file header (number of traces, other vital formatting information);
 - <u>'Traces'</u>, each including:
 - Binary trace header (channel number, coordinate, offset, statics, mute times, filter parameters, etc.).
 Some formats allow user-defined trace headers.
 - > Trace sample values (integer or floating-point).
- SEG-Y format (adopted by SEG as the standard for data exchange):
 - ▶ Text file header of 3200 bytes (40 80-character lines);
 - Binary file header of 400 bytes;
 - Each trace includes:
 - > 240-byte headers, fixed predefined format.
 - > Samples in any of the 2- or 4-byte formats (usually stored as 4-byte IBM REAL).
- A moderate 2-D seismic line with 800 shots recorded on 96 channels at 1500 samples per trace takes about 500 Mb of storage in SEG-Y format (verify this!)

Processing Hardware

Terabytes and Teraflops

Memory

- ightharpoonup 1 byte = 8 bits
- → 1 kbyte (kilo-) = 1024 bytes
- 1 Mbyte (mega-) = 1024^2 bytes
- 1 Gbyte(giga-) = 1024^3 bytes
- 1 Tbyte(tera-) = 1024^4 bytes

Flop

- Number of floating-point operations per second ('+', '-', '*', '/');
- Sqrt() takes ~10-15 operations;
- Multiples:
 - \rightarrow 1 Mflop = 10^6 flop
 - \rightarrow 1 Gflop = 10^9 flop
 - \rightarrow 1 Tflop (tera-) = 10¹² flop
 - \rightarrow 1 Pflop (penta-) = 10^{15} flop
 - \rightarrow 1 Eflop (exa-) = 10^{18} flop
- For top performers, check:

http://www.netlib.org/benchmark/top500/top500.list.html

- 3-D seismic processing routinely utilizes *massively* parallel systems (*e.g.*, ~5000 processors at Veritas DGC in Houston and 2000 in Calgary)
- In recent years Graphics Processing Units (GPU) are broadly used for seismic data processing
 - 100's of processors on a single board

Data reduction, pre-processing

- 1) Demultiplex, Vibroseis correlation, Gain recovery
 - Conversion from file formats produced by field data loggers into processing-oriented formats
 - > SEG-Y, SEG-2
 - > ProMax, Focus, Omega, SU, Vista, etc., internal formats
 - These days, may not be required (done in the field)
- 2) Field Geometry
 - Assignment of source-receiver coordinates, offsets, etc. in the *trace headers*.
- 3) Edit
 - Removal of bad traces (noisy channels, poorly planted geophones, channels contaminated by power line noise, etc.)

First arrivals and Mute

- 4) First arrival picking
 - May be semi-automatic or manual
 - Required for generation of refraction statics models and for designing the mutes
- 5) Elevation statics
 - Based on geometry information, compensates the travel-time variations caused by variations in source/receiver elevations
 - Transforms the records as if recorded at a common horizontal *datum* surface
- 6) Refraction statics
 - Builds a model for the shallow, low-velocity subsurface
 - Compensates the travel-time variations caused by the shallow velocities
- 7) 'Top', 'bottom', and 'surgical' mute
 - → Eliminates (sets amplitude=0) the time intervals where strong non-reflection energy is present:
 - ▶ First arrivals, ground roll, airwave.

Amplitudes and waveforms

- 8) True amplitude recovery (optional)
 - Compensates geometrical spreading;
 - Based on a simple heuristic relation.
- 9) Trace balance
 - Equalizes the variations in amplitudes caused by differences in *coupling*;
 - In true-amplitude processing, replaced with 'surface-consistent deconvolution'.

10) Deconvolution

 Compresses the wavelet in time, attenuates reverberations.

11) Gathering, CMP sorting

In modern processing systems (ProMax, Omega, Vista) done by using *trace lookup spreadsheets* or databases rather than by creating additional copies of the dataset

Stacking velocity analysis and NMO

12) Velocity analysis

• For each of the CMP gathers, determines the optimal *stacking velocity*.

13) Dip Moveout (DMO) correction

Transforms the records so that the subsequent NMO+stack work well even in the presence of dipping reflectors.

14) Normal Moveout (NMO) correction

- Removes the effects of source-receiver separation from reflection records;
- Transforms the records as if recorded at normal incidence.

15) Residual statics

 Removes the remaining small travel-time variations caused by inaccurate statics or velocity model

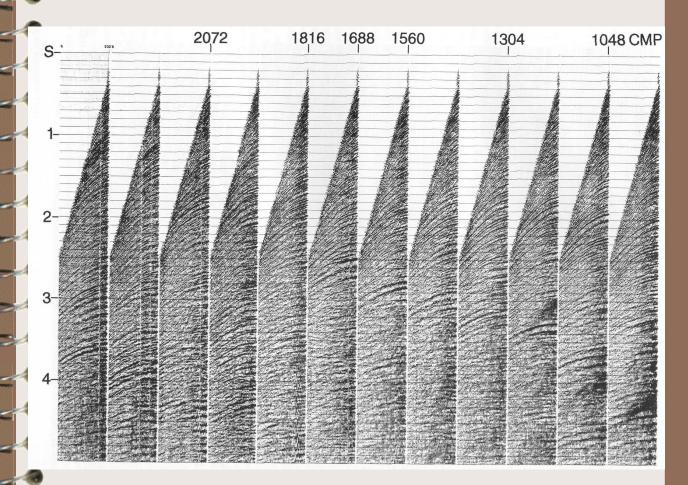
Steps 12-15 above are usually <u>iterated</u> 3-5 times to produce accurate *velocity* and *residual statics* models

 Success of velocity analysis depends on the quality of DMO/NMO and residual statics, and *vice versa*

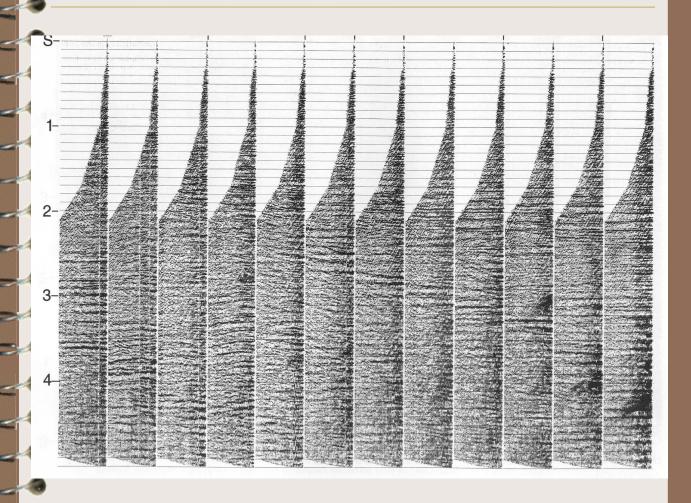
Stacking and Imaging

16) CMP Stack

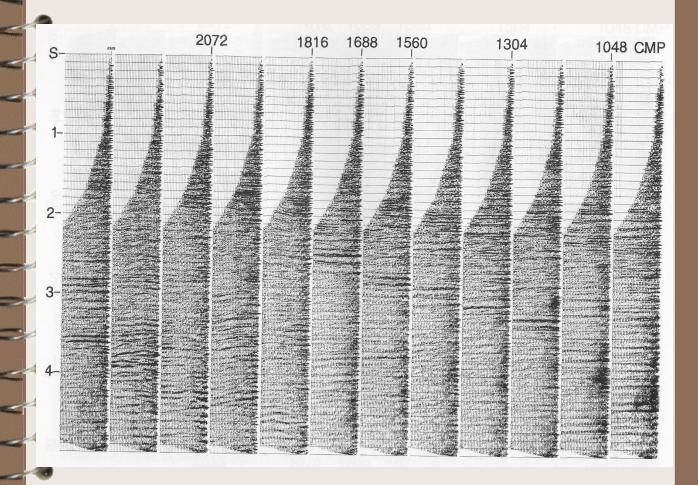
- Produces a zero-offset section;
- Utilizes CMP redundancy to increase the Signal/Noise ratio.

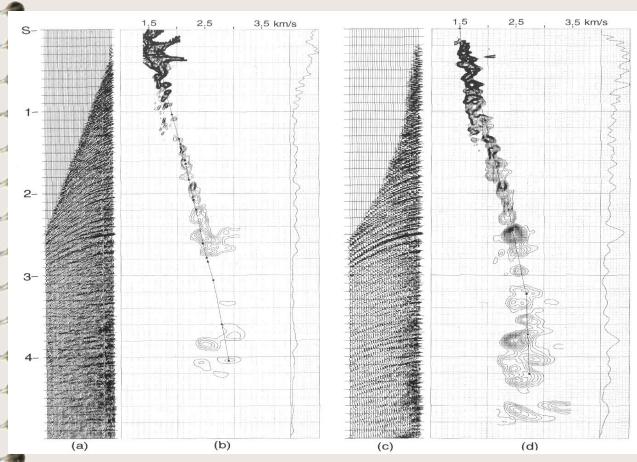

17) Migration

- Transforms the zero-offset *time* section into a depth image;
- Establishes correct extents and dips of the reflectors.

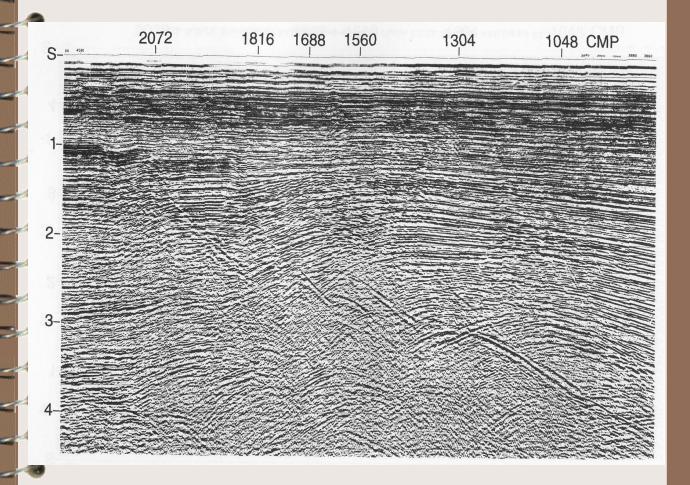

18) Frequency filtering and display

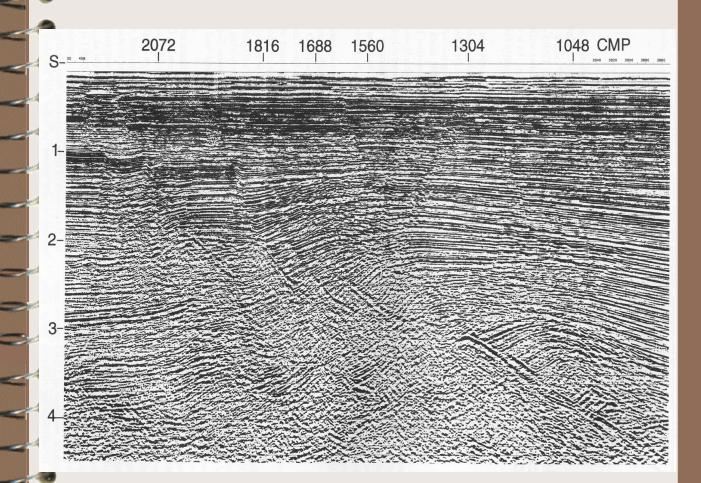
- Band-pass filtering is often time-variant
- Attenuates noise
- Provides best display for interpretation


Example: CMP gathers


Example: CMP gathers after NMO correction

Example: CMP gathers after NMO+DMO corrections


Example: Velocity analysis


Without DMO

With DMO

Example: NMO(+DMO) correction and stack

Example: Final migrated stack

