Ground-Penetrating Radar (also Ground-Probing Radar, GPR)

- Similarities and dissimilarities to seismic
- Case histories
- Reading:
 - > Reynolds, Chapter 12

GPR Principles

- Uses 30-1000 MHz electromagnetic (radio) waves emitted in short "chirps" for probing the subsurface
 - Two dipole antennas as source and receiver
 - Automatically stacks series of pulses for noise reduction
- Directly produces a zero-offset section
 - Optionally, can also be used to produced a constant-offset or walkaway sections
 - Sensitive to *dielectric permittivity* (ε) and *conductivity* (σ)
 - ε varies strongly for different materials (from 1 to max $\varepsilon \approx 80$ for water), which makes material contrasts reflective

Electric properties of materials

Note ranges: green = lowest values, red = largest values

Material	Dielectric permittivity <i>ɛ</i>	Conductivity σ (mSiemens/m)	GPR wave velocity (m/ns)
Air	1	0	0.3
Distilled water	80	0.01	0.033
Fresh water	80	0.5	0.033
Sea water	80	3000	0.01
Dry sand	<mark>3</mark> - 5	0.01	0.15
Saturated sand	20 - 30	0.1 - 1.0	0.06
Limestone	4 - 8	0.5 - 2.0	0.12
Shales	5 - 15	1 - 100	0.09
Silts	5 - 30	1 - 100	0.07
Clays	5 - 40	2 - 1000	0.06
Granite	4 - 6	0.01 - 1.0	0.13
Dry salt	5 - 6	0.01 - 1.0	0.13
Ice	3 - 4	0.01	0.16
Concrete	7	0.001 - 0.01	0.08

Propagation and reflection of radio waves

- Velocity: $c = \frac{c_0}{\sqrt{\varepsilon\mu}} \approx \frac{c_0}{\sqrt{\varepsilon}}$
 - the fastest for the 'air' wave: $c_0 \approx 3.10^8$ m/s
 - generally decreases with depth
- Impedance: $Z = \sqrt{\frac{\mu}{\epsilon}} \approx \sqrt{\frac{1}{\epsilon}}$ [Ohms]

Reflection coefficient for amplitude:

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

Two-way travel times (see table in the preceding slide):

- Air: 6 ns/m
- Unsaturated sand: 12-18 ns/m
- Saturated sand: 18-27 ns/m

Antenna directivity

- GPR antenna focuses energy in a beam directed downward
- Receiver antenna has a similar sensitivity pattern
- These properties of antennas favor reflection imaging

Depth penetration of GPR waves

• GPR wave penetration strongly depends on the conductivity (presence of clays, saline fluids) within the subsurface

Depth resolution

- As with seismic waves, vertical resolution limit of GPR equals $\delta z = \lambda/4$
 - Therefore, δz is proportional to wave velocity and inversely proportional to frequency
 - These are approximate estimates. In practice, δz may be larger or smaller depending on the signal/noise ratio and signal bandwidth

Material	Dielectric permittivity <i>ɛ</i>	δz at $f_c = 100 \text{ MHz}$ (cm)	<i>δ</i> z at f _c = 500 MHz (cm)
Air	1	75	15
Water	80	8.5	1.5
Dry sand	3 - 5	43 - 33	8 - 6
Saturated sand	20 - 30	17 - 13	3.5 - <mark>3</mark>
Limestone	4 - 8	<mark>75</mark> - 53	<mark>15</mark> - 10
Shales	5 - 15	65 - 40	13 - 8
Silts	5 - 30	67 - 27	13 - 5
Clays	5 - 40	66 - 24	13 - 5
Granite	4 - 6	75 - 60	15 - 12
Dry salt	5 - 6	67 - 60	13 - 12
Ice	3 - 4	<mark>85</mark> - 75	<mark>17</mark> - 15
Concrete	7	55	11

Note ranges: green = lowest values, red = largest values

Relation to Reflection Seismics

Similarities:

- Processing procedures (filtering, stacking, migration)
- Appearance of the zero-offset section
- Resolution-frequency relationships
- Interpretation techniques
- Differences:
 - Nanoseconds (ns) instead of milliseconds (ms)
 - Sub-meter vertical resolution and ~10-100 m penetration
 - Electrical properties instead of acoustic impedance
 - Very sensitive to buried metallic objects
 - Velocities decrease with depth
 - Rays bend *toward* the vertical
 - > Free-air arrival is the *fastest*
 - Faster attenuation
 - Large velocity contrasts
 - Sub-meter resolution

Thus, GPR is a valuable complementary technique to shallow seismics

GPR operation

GPR acquisition styles

Zero-offset (collocated source and receiver antennas)

Most typical in GPR work

Inexpensive 3-D surveys

Wide-angle or expanding CMP surveys to measure velocities

GPR applications

- Generally, any cases where the subsurface is *not* too conductive but targets have different electric properties
- Geological:
 - Detection of natural cavities and fissures
 - Subsidence mapping
 - Mapping sand body geometry
 - Mapping of superficial deposits
 - Soil stratigraphy mapping
 - Glacial geological investigations
 - Mineral exploration and resource evaluation
 - Peat thickness mapping and resource evaluation Permafrost investigations
 - Location of ice wedges
 - Fracture mapping in rock salt
 - Location of faults, dykes, coal seams, etc.
 - Geological structure mapping
 - Lake and riverbed sediment mapping

GPR applications (cont)

Environmental:

- Contaminant plume mapping
- Mapping and monitoring pollutants within groundwater Landfill investigations
- Location of buried fuel tanks and oil drums
- Location of gas leaks
- Groundwater investigations
- Glaciological:
 - Ice thickness mapping
 - Determination of internal glacier structures
 - Ice movement studies
 - Detection of concealed surface and basal glacier crevasses Mapping water conduits within glaciers
 - Determination of thickness and type of sea and lake ice Sub-glacial mass balance determination
 - Snow stratigraphy

GPR applications (cont)

- Engineering and construction:
 - Road pavement analysis
 - Void detection
 - Location of reinforcement (rebars) in concrete
 - Location of public utilities (pipes, cables, etc.)
 - Testing integrity of building materials
 - Concrete testing
 - Archaeology:
 - Location of buried structures
 - Pre-excavation mapping
 - Detection of voids (crypts, etc.)
 - Location of graves
- Forensic science:
 - Location of buried targets (e.g. bodies and bullion)

GPR equipment Systems with shielded antennas

PulseEKKO RockNoggin

PulseEKKO 100

GPR applications

Archeology

<

Case history: Engineering

Detecting tunnels (Sweden)

A A A A

- 50-Mhz GPR locates two tunnels at 11 meters depth
- GPR locates a cable and culvert
- GPR defines overburden thickness

Case history: Glaciology

- Measuring snow depth on Storglacierien, a small polythermal glacier in northern Sweden.
- Snow thickness were estimates by identifying summer ice surfaces

VVV

Tarfala, 400 MHz Ramac/GPR 2060 m 40 20 60 0 m SCHOOL 5 Summer 1995 10 Summer 1994 15 20Snow depth profile

From http://www.terraplus.com/gpr_case_study.htm

Case history: 3D characterization of a clastic reservoir analog (Szerbak et al., 1999)

- Integration of multiple geophysical approaches:
 - Mapping outcrop
 - 3-D GPR cube adjacent to the outcrop
 - Well logging and sampling
 - Geostatistics of permeability/velocity/depth relationships
 - Inversion for permeability

Trough Cross-Bedded Sandstone Massive & Parallel-Laminated Sandstone **Ripple Cross-Laminated Siltstone** Mudstone-Intraclast Conglomerate Mudstone

(md)

(Total Count) 800 600 400

10 meters

Case history (cont 0): location map

Coyote basin, UT

N N N N

Case history (cont. 1) (Szerbak et al., 1999)

3D radargram

Case history (cont. 2) (Szerbak et al., 1999)

<

~

b)

a

Case history (cont. 3) (Szerbak et al., 1999)

Correlation of GPR results with clay and permeability data

Case history (cont. 5) (Szerbak et al., 1999)

Statistical relationships between permeability, clay content, and *velocity*

Correlations are identified (lines in the plots) and used as proxies for relations between physical properties

Case history (cont. 4) (Szerbak et al., 1999)

Velocity distribution correlation functions.

NAN

Case history (cont. 6) (Szerbak et al., 1999)

N N N

Final reflectivity, velocity, and permeability models

Case history (cont. 7) (Szerbak et al., 1999)

3D permeability cube

A A A A A

