Geometrical Seismics (Seismic phenomenology)

- *P* and *S*-waves, typical velocities;
- Wavefronts;
- Rays;
- Reflection, Refraction, Conversion;
- Head wave (critical refraction);
- Huygens' principle;
- Fermat principle;
- Snell's law of refraction;
- Seismic wave nomenclature.
- Reading:
 - > Reynolds, Sections 5.1-3, 6.1-6.2.2
 - > Shearer, 4.1-4.3, 4.9
 - > Telford et al., Sections 4.3-4.

Seismic Method How it works

- Generate a mechanical elastic signal
 - "Controlled source" (impact on the ground): Locations and times are known with precision
 - "Passive source": Locations and times need to be determined
- Several types of seismic waves are generated
 - So we have to be able to recognize them!
- Signal travels through the subsurface
- At boundaries between different media, the energy is *reflected*, *transmitted*, or *refracted*
- The transformed signal is recorded by the receivers on the surface (or borehole, *etc.*)
 - Locations of all detectors are known with precision.
- *Arrivals* are identified and their *times* (and amplitudes) are determined
- Travel-times are used to determine the subsurface velocities and the positions of boundaries

Forward and Inverse Seismic Problems

- Forward problem
 - Layer thicknesses and velocities are known
 - Calculate arrival times (easy to do)
- Inverse problem
 - Arrivals are identified (where possible)
 - Arrival times are known
 - Find *velocities* and *depths* (not so easy to do)

Seismic Properties

P- (*primary* or "*pressure*", faster) and *S*- (*secondary* or "*shear*", slower) waves are most important

Their propagation and reflections depend on *elastic* velocities (V_P, V_S) of the medium and its *density*

Material	Vp (m/s)	Vp (ft/s)	Vs (m/s)	Vs (ft/s)	$\rho(g!cm^3)$
Air	332	1090			0.0038
Water	1,400 - 1,600	4,600 - 5,250			1.0
Soil	300 - 900	980 - 2,950	120 - 360	390 - 1,180	1.7 - 2.4
Sandstone	e 2,000 - 4,300	6,560 - 14,100	700 - 2,800	2,300 - 9,190	2.1 - 2.4
Chalk	2,200 - 2,600	7,220 - 8,530	1,100 - 1,300	3,610 - 4,270	1.8 - 3.1
Limestone	e 3,500 - 6,100	11,490 - 20,000	2,000 - 3,300	6,560 - 10,830	2.4 - 2.7
Dolomite	3,500 - 6,500	11,490 - 21,330	1,900 - 3,600	6,240-11,810	2.5 - 2.9
Salt	4,450 - 5,500	14,600 - 18,050	2,500 - 3,100	8,200 - 10,170	2.1 - 2.3
Granite	4,500 - 6,000	14,770 - 19,690	2,500 - 3,300	8,200 - 10,830	2.5 - 2.7
Basalt	5,000 - 6,400	16,400 - 21,000	2,800 - 3,400	9,190 - 11,160	2.7 - 3.1
Quartz	6,049	19,846	4,089	13,415	2.65
Calite	6,640	21,783	3,436	11,273	2.71

- Velocities are sensitive to multiple factors:
 - Lithology,
 - Pressure, depth of burial (increase)
 - Temperature (decrease)
 - Fractures, porosity, fluid content (decrease)
 - Anisotropy,...

Wavefronts and Rays

- Vibrations originate at the source and propagate away from it
- Wavefronts are defined as surfaces of <u>constant</u> propagation time
- Rays are lines that are <u>orthogonal to the wavefronts</u> at every point
- Wavefronts propagate along the rays at the local wave velocity within the medium
 - Rays generally indicate wave propagation direction and energy flux.
 - However, only in relatively simple cases free of 'caustics' and 'diffractions'
 - In a homogeneous medium, wavefronts are spheres of progressively increasing radii.
 - At greater distances, spherical wavefronts approach <u>planar shapes</u>:

Spherical divergence

Waveform/Ray picture is very commonly used in the seismic method.

Ray diagrams also allow estimation of the *wave amplitude decay* due to geometrical (spherical) spreading:

The amplitude progressively decreases so that the energy E passing through the shaded spherical shell remains constant Spherical-shell area S is

proportional to R^2 , and therefore the energy density

$$A^2 \propto \frac{E}{S} \propto \frac{1}{R^2}$$

Therefore, *for spherical wavefronts* (and straight rays), the amplitude *A* decreases with distance, as:

Exercise: show that for cylindrical waves, spreading is $\frac{1}{1}$

 $A \propto \frac{1}{R}$

$$A \propto \frac{1}{\sqrt{R}}$$

Huygens' Principle

- Energy spreads from a point source in a spherical manner. So, near the source, the wavefronts are spherical (circular in 2-D)
- Every point on a wavefront can be viewed as a
 source of secondary waves that spread put in
 spheres (circles). Envelope of these spheres is the
 new wavefront

- In Lab 1, you will use this principle to work out the head wave propagation problem.
- A more rigorous treatment of this principle is known as the Kirchhoff theory.

Diffraction

- Secondary wavefronts can penetrate into '*shadow zones*' into which the normal, '*specular*' rays from the source cannot enter.
- This is a fundamental effect of wave propagation called *diffraction*.

From Reynolds, 1997

GEOL 335.3

Fermat Principle (Least-time path, *brachistochrone*)

- A wave will take the path for which the travel time is *stationary* with respect to minor variations of the ray path.
 - Stationary means when the ray path is slightly perturbed, variation of its travel time is zero (to the first order of perturbation).
- Usually, the ray path has the smallest travel time among its small perturbations.

Example of using Fermat principle: Snell's law of refraction

Show that the travel time is stationary ($\delta t = 0$) for a ray bending at the velocity interface; so that:

 $\frac{\sin\alpha}{V_1} = \frac{\sin\beta}{V_2}$

This relation is called the Snell's law or refraction

Example of using Fermat principle: Snell's law of refraction

Show that the travel time is stationary $(\delta t = 0)$ for a ray bending at the velocity interface; so that:

 $\frac{\sin\alpha}{V_1} = \frac{\sin\beta}{V_2}$

Solution: draw in the wavefronts as well:

Seismic Phases used in refraction/reflection seismics

P- and *S*- body waves:

- Refracted (bending) across velocity interfaces.
- 'Head waves' traveling along velocity discontinuities.
- Reflected from velocity and/or density contrasts.
- Sometimes surface waves (called 'Rayleigh' and 'Love')

Travel-Time Dependencies ("Travel-Time Curves")

When an arrival is identified in a dense geophone grid within a range of source-receiver *offsets* (distances), its travel times form a a set of *t*(*offset*) points, called the *travel-time curve* (TTC).

- Convex, piecewise-linear segments in the *first arrivals* are characteristic of *refractions*, strong,
- Concave, hyperbolic secondary arrivals are typically reflections.

The goal of interpretation is to derive the velocity structure that could explain both:

- Shapes of all the observed TTCs.
- Offset ranges within which the arrivals are observed.

Global travel times

Global seismic phase nomenclature

Global seismic ray paths

- P, S: P- or S-wave in the mantle;
- K: P-wave in the outer core;
- I, J: P- or S-wave in the inner core;
- **c**: reflection from the core-mantle boundary;
- i: reflection from the inner-core boundary.

Refraction in a *laterally homogeneous* structure: Snell's law

When waves (rays) penetrate a medium with a different velocity, they *refract*, *i.e.* bend toward or away from the normal to the velocity boundary.

The *Snell's Law of refraction* relates the angles of incidence and emergence of waves refracted on a velocity contrast:

Refraction in a stack of horizontal layers

Ray parameter, *p*, uniquely specifies the entire ray.

It does not depend on layer thicknesses or velocities.

Travel times and distances accumulate along the ray to yield the total T(X)

Critical angle of refraction

- Consider a faster medium overlain with lowervelocity layer (this is the typical case).
- *Critical angle* of incidence in the slower layer is such that the refracted waves (rays) travel horizontally in the faster layer (sin r = 1)
- The critical angles thus are:

• Critical *ray parameter*:

$$p^{\text{critical}} = \frac{1}{V_{\text{refractor}}}$$

• If the incident wave strikes the interface at an angle exceeding the critical one, *no refracted or head wave is generated*

Critical refraction: Head Waves

- At critical incidence from the "slower" medium, a *head wave* is generated in the "faster" one.
- Although in reality head waves carry little energy, they are useful approximation for interpreting seismic wave propagation in the presence of strong velocity contrasts.
- Head waves are characterized by planar wavefronts inclined at the critical angle in respect to the velocity boundary:

Head-wave travel times

Head-wave travel-time curves are straight lines:

$$t(x) = t_0 + \frac{x}{V_{\text{app}}}$$

Here, t_0 is the *intercept time*, and V_{app} is the *apparent velocity* Note that "apparent" often means "as observed" (but not necessarily "true")

