Refraction Seismic Method

- Intercept times and apparent velocities;

Critical and crossover distances;
Hidden layers;
Determination of the refractor velocity and depth; The case of dipping refractor Inversion methods:

- "Plus-minus" method
- Generalized Reciprocal Method
- Travel-time continuation

Reading:
, Reynolds, Chapter 5

- Shearer, Chapter 4
> Telford et al., Sections 4.7.9, 4.9

Refraction Seismic Method

Uses travel times of refracted arrivals to derive:

1) Depths to velocity contrasts ("refractors")
2) Shapes of refracting boundaries
3) Seismic velocities

Apparent Velocity

Relation to wavefronts

Apparent velocity, $V_{\text {app }}$, is the velocity at which the wavefront sweeps across the geophone spread

- Because the wavefront also propagates upward, $V_{\text {app }} \geq V_{\text {true }}$:

$$
A C=\frac{B C}{\sin \theta} \longrightarrow V_{\text {app }}=\frac{V}{\sin \theta}
$$

- 2 extreme cases:
- $\theta=0: V_{\text {app }}=\infty$;
, $\theta=90^{\circ}: V_{\text {app }}=V_{\text {true }}$.

A Apparent propagation direction

Two-layer problem

(One reflection and one refraction)

Travel-time relations

Two horizontal layers

- For a head wave ("often called refraction"):

$$
p=\frac{1}{V_{2}} \quad \sin i_{c}=p V_{1} \quad \cos i_{c}=\sqrt{1-\left(p V_{1}\right)^{2}}
$$

$$
t=2 \frac{h_{1}}{V_{1} \cos i_{c}}+p\left(x-2 h_{1} \tan i_{c}\right)=t_{0}+p x{ }^{\begin{array}{c}
\text { linear moveout" } \\
\text { term }
\end{array}}
$$

$$
-2 \frac{h_{1}}{(1-n V \sin i)-2 h_{1}-\text { intercept time }}
$$

$$
t_{0}=2 \frac{h_{1}}{V_{1} \cos i_{c}}\left(1-p V_{1} \sin i_{c}\right)=\frac{2 h_{1}}{V_{1}} \cos i_{c}
$$

this also equals sin i
For a reflection (we'll use this later):

$$
t=2 \frac{\sqrt{h_{1}^{2}+\left(\frac{x}{2}\right)^{2}}}{V_{1}}=\frac{\sqrt{4 h_{1}^{2}+x^{2}}}{V_{1}}
$$

hyperbolic

$$
p V_{1}=\sin i
$$

$$
\tan i=\frac{x}{2 h_{1}}
$$

here, p is variable and controlled by arbitrary angle i

Critical and cross-over distances

- Critical distance:

$$
x_{\text {critical }}=2 h_{1} \tan i_{c}=2 h_{1} \frac{V_{1} / V_{2}}{\sqrt{1-\left(V_{1} / V_{2}\right)^{2}}}=\frac{2 h_{1} V_{1}}{\sqrt{V_{2}^{2}-V_{1}^{2}}}
$$

Cross-over distance:

$t_{\text {direct }}\left(x_{\text {crossover }}\right)=t_{\text {headwave }}\left(x_{\text {crossover }}\right)$
$\frac{x_{\text {crossover }}}{V_{1}}=t_{0}+\frac{x_{\text {crossover }}}{V_{2}}$

$$
x_{\text {crossover }}=\frac{t_{0}}{\left(1 / V_{1}-1 / V_{2}\right)}
$$

Multiple-layer case

 (Horizontal layering)p is the same
$\begin{aligned} & \begin{array}{l}\text { critical ray } \\ \text { parameter; }\end{array}\end{aligned} \quad p=\frac{1}{V_{\text {refractor }}}$
t_{0} is
accumulated across the layers:

$$
t=\sum_{k=1}^{n} \frac{2 h_{k}}{V_{k}} \cos i_{k}+p x
$$

Dipping Refractor Case shooting down-dip

$$
t=2 \frac{h_{d}}{V_{1}} \cos i_{c}+\frac{1}{V_{2}} x\left(\cos \alpha-\sin \alpha \tan i_{c}\right)+\frac{1}{V_{1}} \frac{x \sin \alpha}{\cos i_{c}}
$$

$$
t=\frac{2 h_{d}}{V_{1}} \cos i_{c}+\frac{x}{V_{1} \cos i_{c}}\left[\frac{V_{1}}{V_{2}}\left(\cos \alpha \cos i_{c}-\sin \alpha \sin i_{c}\right)+\sin \alpha\right]
$$

$$
t=\frac{2 h_{d}}{V_{1}} \cos i_{c}+\frac{x}{V_{1}}\left(\cos \alpha \sin i_{c}+\sin \alpha \cos i_{c}\right)
$$

$$
t=\frac{2 h_{d}}{V_{1}} \cos i_{c}+\frac{x}{V_{1}} \sin \left(i_{c}+\alpha\right)
$$

Refraction Interpretation Reversed travel times

One needs reversed recording (in opposite directions) for resolution of dips

The reciprocal times, T_{R}, must be the same for reversed shots

Dipping refractor is indicated by:

- Different apparent velocities ($=1 / p$, TTC slopes) in the two directions;
, determine V_{2} and α (refractor velocity and dip).
- Different intercept times.
, determine h_{d} and h_{u} (interface depths).

Determination of Refractor Velocity and Dip

Apparent velocity is $V_{\text {app }}=1 / p$, where p is the ray parameter (i.e., slope of the travel-time curve)

- Apparent velocities are measured directly from the observed TTCs;
- $V_{\text {app }}=V_{\text {refractor }}$ only in the case of a horizontal layering For a dipping refractor:
- Down dip: $V_{d}=\frac{V_{1}}{\sin \left(i_{c}+\alpha\right)}$ (slower than $\left.V_{2}\right)$;
- Up-dip: $V_{u}=\frac{V_{1}}{\sin \left(i_{c}-\alpha\right)} \quad$ (faster).

From the two reversed apparent velocities, i_{c} and α are determined:

$$
\begin{aligned}
& i_{c}+\alpha=\sin ^{-1} \frac{V_{1}}{V_{d}} \quad i_{c}-\alpha=\sin ^{-1} \frac{V_{1}}{V_{u}} \\
& \left.i_{c}=\frac{1}{2}\left(\sin ^{-1} \frac{V_{1}}{V_{d}}+\sin ^{-1} \frac{V_{1}}{V_{u}}\right)\right) \\
& \alpha=\frac{1}{2}\left(\sin ^{-1} \frac{V_{1}}{V_{d}}-\sin ^{-1} \frac{V_{1}}{V_{u}}\right)
\end{aligned}
$$

From i_{c}, the refractor velocity is:

$$
V_{2}=\frac{V_{1}}{\sin i_{c}}
$$

Determination of Refractor Depth

From the intercept times, t_{d} and t_{u}, refractor depth is determined:

Delay time

Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).

- In this case, we can separate the times associated with the source and receiver vicinities: $t_{S R}=t_{S X}+t_{X R}$.
Relate the time $t_{S X}$ to a time along the refractor, $t_{B X}$: $t_{S X}=t_{S A}-t_{B A}+t_{B X}=t_{S \text { Delay }}+x / V_{2}$.

$$
t_{\text {SDelay }}=\frac{S A}{V_{1}}-\frac{B A}{V_{2}}=\frac{h_{s}}{V_{1} \cos i_{c}}-\frac{h_{s} \tan i_{c}}{V_{2}}=\frac{h_{s}}{V_{1} \cos i_{c}}\left(1-\sin ^{2} i_{c}\right)=\frac{h_{s} \cos i_{c}}{V_{1 .}}
$$

Thus, source and receiver delay times are:

$$
t_{S, R \text { Delay }}=\frac{h_{s, r} \cos i_{c}}{V_{1 .}} \text { and } t_{S R}=t_{S \text { Delay }}+t_{R \text { Delay }}+\frac{S R}{V_{2}}
$$

Plus-Minus Method

(Weathering correction; Hagedoorn)

Assume that we have recorded two headwaves in opposite directions, and have estimated the velocity of overburden, V_{1}

How can we map the refracting boundary?

Solution:

, Profile $S_{1} \rightarrow S_{2}: \quad t_{S_{1} D}=\frac{x}{V_{2}}+t_{S_{1}}+t_{D}$
, Profile $S_{2} \rightarrow S_{1}: \quad t_{S_{2} D}=\frac{\left(S_{1} S_{2}-x\right)}{V_{2}}+t_{S_{2}}+t_{D}$

- Form PLUS travel-time:

$$
\begin{aligned}
& t_{P L U S}=t_{S_{1} D}+t_{S_{2} D}=\frac{S_{1} S_{2}}{V_{2}}+t_{S_{1}}+t_{S_{2}}+2 t_{D}=t_{S_{1} S_{2}}+2 t_{D} \\
& \text { Hence: } t_{D}=\frac{1}{2}\left(t_{P L U S}-t_{S_{1} S_{2}}\right)
\end{aligned}
$$

- To determine i_{c} (and depth), we still need to find V_{2}

Plus-Minus Method

(Continued)

- To determine V_{2} :
- Form MINUS travel-time:
$t_{\text {MINUS }}=t_{S_{1} D}-t_{S_{2} D}=\frac{2 x \mid-\overline{S_{1}} \bar{S}_{2}----t_{S_{1}}-t_{S_{2}}}{V_{21}}-\frac{V_{2}}{V_{2}}$,
Hence: $\operatorname{slope}\left[t_{\text {MINUS }}(x)\right]=\frac{2}{V_{2}}$
- The slope is usually estimated by using the Least Squares method

Drawback of this method - averaging over the pre-critical region

Generalized Reciprocal Method (GRM)

Introduces offsets (' $X Y^{\prime}$ ') in travel-time readings in the forward and reverse shots;

- so that the imaging is focused on a compact interface area

Proceeds as the plus-minus method;
Determines the 'optimal' XY:

1) Corresponding to the most linear velocity analysis function;
2) Corresponding to the most detail of the refractor.

$$
t_{V}=\frac{1}{2}\left(t_{S_{1} D}-t_{S_{2} D}+t_{S_{1} S_{2}}\right)
$$

should be linear, slope $=1 / V_{2}$;
The velocity analysis function:

- The time-depth function:

$$
t_{D}=\frac{1}{2}\left(t_{S_{1} D}+t_{S_{2} D}-t_{S_{1} S_{2}}-\frac{X Y}{V_{2}}\right)
$$

this is related to the desired depth:

$$
h_{D}=\frac{t_{D} V_{1} V_{2}}{\sqrt{V_{2}^{2}-V_{1}^{2}}}
$$

Head-wave "migration" (travel-time continuation) method

"Migration" refers to transforming the space-time picture (travel-time curves here) into a depth image (position of refractor).

Refraction (head-wave) migration:

- Using the observed travel times, draw the head-wave wavefronts in depth;
- Identify the surface on which:

$$
t_{\text {forward }}(x, z)+t_{\text {reversed }}(x, z)=T_{R}
$$

- This surface is the position of the refractor.
 times from S_{2}

Constant travel times from S_{1}

Phantoming

Refraction imaging methods work within the region sampled by head waves, that is, beyond critical distances from the shots;

In order to extend this coverage to the shot points, phantoming can be used:

- Head wave arrivals are extended using time-shifted picks from other shots;
- However, this can be done only when horizontal structural variations are small.

The "Hidden-Layer" Problem

Velocity contrasts may not be visible in refraction (first-arrival) travel times. Three typical cases:

- Low-velocity layers do not appear in first arrivals in principle:
(A)

- Relatively thin layers on top of a strong velocity contrast;
(C)

- Short travel-time branch may be missed when using sparse geophone coverage:
(D)

