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Elasticity and 
Seismic Waves

Concepts of macroscopic mechanics of solids

Rock as 'elastic continuum'

Elastic body is deformed in response to stress

Two types of deformation (strain): Changes in 

volume and shape

Equations of motion

Wave equations

Plane and spherical waves

Reading:

➢ Shearer, Sections 2, 3

➢ Telford et al., Section 4.2.
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Mechanical properties of 
continuous solids (or fluids)

In seismic waves, we consider only small 
deformations (one part out million or less)

Particles only oscillate slightly near equilibrium 
points, and the behaviour of fluids/gases is similar to 
solids

I try explaining mechanics of continuous solid 
media through analogies with a mass suspended 
on a spring: 

Mass of the body m is analogous to density r

Force vector F is analogous to stress tensor s

Extension of the spring x – to strain tensor e

Hooke’s law F = -kx – to Hooke’s law for solids

Elastic constant k – to elastic “moduli” for solids

Newton’s law ma = F also applies in both cases

Oscillations of mass m correspond to waves and 
multiple forms of free oscillations of solid bodies 

In the following slides, we go through these 
concepts one by one 
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Stress

Consider the interior of a deformed body:

At point P, force dF acts on 
any infinitesimal area dS

dF is proportional to dS
(shown on the next slide)

Stress, with respect to 

direction n, is a vector equal:

lim(dF/dS) (as dS → 0)

Stress is measured in [Newton/m2], or Pascal

Note that this is a unit of pressure

dF can be decomposed in two components relative 
to the surface or n:

Orthogonal to the surface (parallel to n; this called 
normal stress)

Tangential to the surface (shear stress)
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Stress

Stress, in general, is a tensor:

It is described in terms of 3 force components 

acting across each of 3 mutually orthogonal 

surfaces

6 independent parameters

Force dF/dS depends on the orientation n, but stress 

does not

Stress is best described by a matrix:

In a continuous medium, stress depends on (x,y,z,t) 
and thus it is a field
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Forces acting 
on a small cube 

Consider a small cube within the elastic body. 
Assume dimensions of the cube equal '1'

Both the forces and torque acting on the cube from 

the outside are balanced:

In consequence, the stress tensor is symmetric:    
s

ij
= s

ji

The stress tensor is given by just 6 independent 

parameters out of 9
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Strain 
within a deformed body

Strain is a measure of deformation, i.e., variation of 
relative displacement as associated with a particular 
direction within the body

It is, therefore, also a tensor

Represented by a matrix

Like stress, it is decomposed into normal and shear

components

Seismic waves yield strains of 10-10-10-6

So we rely on infinitesimal strain theory 
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Elementary Strain

When a body is deformed, displacements (U) of its 
points are dependent on (x,y,z), and consist of:

Translation (blue arrows below)

Deformation (red arrows) 

Elementary strain is simply i
ij

j

U
e

x


=
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Strain Components

However, certain forms of U(x,y,z) dependencies 
correspond to simple rotations of the body without 
changing its shape:

Deformation in which                             is actually a rotation 

about the 'y' axis.

So, the case of                               is called pure shear (no 

rotation)

To characterize deformation without rotations, only 

the symmetric combination of the elementary strains 

is used:

xz
UU

x z


= −

 

xz
UU

x z


=
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Dilatational Strain 
(relative volume change 

during deformation)

Original volume:  V=xyz

Deformed volume: 

V+V=(1+e
xx

)(1+e
yy

)(1+e
zz

)xyz

Dilatational (volumetric) strain:

Note that (as expected) shearing strain does not 
change the volume

( )( )( )1 1 1 1

div

xx yy zz xx yy zz

ii i i i i

V

V

U U

dUUv=i


e e e e e e

e

 = = + + + −  + +

 = =  =  = U
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Hooke's Law
(general)

Describes the stress developed in a deformed body:

F = -kx for an ordinary spring (1-D)

s ~ e (in some sense) for a 'linear', 'elastic' 3-D solid. 

This is what it means:

During loading and 
unloading, material passes 
through the same (e,s) 
points (reversible process)

During unloading, material 
passes through larger 
strains (e) and does not 
return to the initial state  
(irrreversible process)



GEOL 335.3

Hooke's Law
(general)

For a general (anisotropic) medium, there are 36 
coefficients of proportionality between six 
independent values of e

ij. 
and six s

ij
. These 

coefficients form the “rigidity” matrix C:

xx xx

yy yy

zz zz

xy xy

xz xz

yz yz

s e

s e

s e

s e

s e

s e

   
   
   
   

=   
   
   
   
   
   

C

Matrix C also turns out to be symmetric, and so 
there exist 21 independent elastic (rigidity) 
constants for an anisotropic solid
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Hooke's Law
(isotropic medium)

For  isotropic medium, the strain/stress relation is 
described by just two constants:

s
ij

=  + e
ij

for normal strain/stress (i=j, where i,j

= x,y,z)

s
ij

= e
ij

for shear components (ij)

 and  are called the Lamé constants.
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Empirical Elastic Moduli
Young’s (extensional) modulus and Poisson’s ratio

Lamé modulus  practically never acts alone and 
is not observed in experiments

Depending on boundary conditions (i.e., on
experimental setup), different combinations of 
 and  are measured. These combinations are 
called (empirical) elastic constants, or moduli

Similar to  and , elastic constants come in pairs:

Young's modulus and Poisson's ratio:

Consider a cylindrical sample uniformly 

squeezed or stretched along axis X:

Often denoted s.
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Empirical Elastic Moduli
Bulk and Shear

Bulk modulus, K

Consider a cube subjected to hydrostatic pressure 

Finally, the constant  complements K in describing 
the shear rigidity of the medium, and thus it is also 
called the 'rigidity modulus'

For rocks:

Generally, 10 GPa <  < K < E < 200 GPa

0 <  < ½ always; for rocks, 0.05 <  < 0.45, for most 

“hard rocks”,  is near 0.25

For fluids,  = ½ and  = 0 (no shear resistance)
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Empirical Elastic Moduli
P-wave and S-wave

From seismic waves, another pair of empirical 
moduli is obtained from measured wave velocities:

“P-wave modulus” M corresponds to compression-

extension deformations in one direction only

“S wave modulus” corresponds to shear deformations 

(without volume change) transversely to wave 

propagation

This modulus is the same as 

P

P wave
(“primary”)

Modulus M

S wave
(“secondary”, 

“shear”)

Modulus 

2M  = +

P

M
V

r
= SV



r
=
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Strain/Stress 
Energy Density

Mechanical work is required to deform an elastic 
body; as a result, elastic energy is accumulated in 
the strain/stress field

When released, this energy gives rise to 

earthquakes and seismic waves

For a loaded spring (1-D elastic body),                   

E = ½kx2 =½Fx

Similarly, for a deformed elastic medium, energy 

density is:

Energy density (per unit volume) is thus 
measured in:

 3 2

Newton×m Newton
= Pa

m m

   
=   
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Inhomogeneous Stress

If stress is 
inhomogeneous 
(variable in 
space), its 
derivatives result 
in a net force
acting on an 
infinitesimal 
volume:

iyix iz
iF V

x y z

ss s


  
= + + 

   
Thus, for i = x, y, z:

    

    

xx
x xx xx

xy

xy xy

xyxz xx xz
xz xz

F x y z
x

y x z
y

z x y y y z
z x y z

s
s  s  

s
s  s  

ss s s
s  s     

   
= + −  

  

   
+ + −  

  

      
+ + − = + +   
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Equations of Motion
(Govern motion of the elastic body 

with time)

Uncompensated net force will result in acceleration
(Newton's law): 

These are the
equations of 
motion for each 
of the 
components of
U: 

2

2

iyi ix izU

t x y z

ss s
r

   
= + + 

    

2

2

i
i

U
V F

t
r


=


Newton's law:
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Wave Equation
(Propagation of 

compressional/acoustic waves)

To show that these three equations describe several 
types of waves, first let's apply divergence 
operation to them: 

This is a wave equation; compare to the general 
form of  equation describing wave processes: 

Above, c is the wave velocity.

We have:

This equation describes compressional (P) waves

P-wave velocity:



GEOL 335.3

Wave Equation
(Propagation of shear waves)

Similarly, let's apply the curl operation to the 
equations for U (remember, curl(grad) = 0 for 
any field: 

This is also a wave equation; again compare to the 
general form: 

This equation describes shear (S), or transverse
waves. 

Since it involves rotation, there is no associated 

volume change, and particle motion is across the 

wave propagation direction.

Its velocity:V
S

< V
P
, 

For  = 0.25, 3P

S

V

V
=

SV


r
=
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Wave Polarization

Thus, elastic solid supports two types of body 
waves:
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Waveforms and 
wave fronts

Plane waves

Consider the wave equation:

Why does it describe a wave? Note that it is  
satisfied with any function of the form:

The function () is the waveform. Note that the 
entire waveform propagates with time to the right or 
left along the x-axis , x=ct. This is what is called 
the wave process.

The argument of (...) is called phase

Surfaces of constant phase are called wavefronts

In our case, the wavefronts are planes:                   

x = phase ct for any (y,z).

For this reason, the above solutions are plane 

waves
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Waveforms and 
wave fronts

Non-planar waves

The wave equation is also satisfied by such solutions 
(spherical waves):

( ) ( )
1

,f t ct= −r r
r

Question: what is the problem with the 
second solution in each pair?

...and by such (cylindrical waves):

( ) ( )
1

,f t ctr  r
r

= −

...and by various other solutions

( ) ( )
1

,f t ct= +r r
r

( ) ( )
1

,f t ctr  r
r

= +

Spreading away from point r = 0 Converging to r = 0

Spreading away from r = 0 Converging to r = 0
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Waves and sources

Homogeneous wave equation  describes free 
waves:

plane, spherical, cylindrical...

incoming, outgoing... 

Inhomogeneous equation describes waves 
generated by a source:

Note that this also includes all of the free waves, 
and so one also needs boundary conditions to 
specify a unique solution

For example, no waves usually come from infinity 
toward the source (this is called the “radiation 
condition”)

2
2

2 2

1
0f

c t

 
−  = 

 

2
2

2 2

1
f source

c t

 
−  = 
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