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Geol 335.3 

Lab #7: Fourier Transforms and Filtering 

Many signals represent functions of a single variable, such as ground motion or 

sound recorded at a given point is a function of time. In this exercise, you will learn that 

these records can also be represented in a conjugate domain of variable 

frequency = 1/time, as a combination of multiple harmonic functions of time. An example 

of such combination of cosine functions giving a pulse-like source waveform was used in 

the preceding labs. 

The transformations between the time-domain and frequency-domain 

representations of a signal are called the forward and inverse Fourier transforms. These 

transformations are the key part of numerous signal-processing algorithms. In this lab, 

you will familiarize yourself with Fourier transforms, examine properties of simple 

signals, and try simple bandpass filtering. 

Fourier transforms 

Consider any function u(t) of one variable (for example, time t) discretized at N 

points tk (for example, tk = kt, with k = 0, …N–1). This function can be equivalently 

represented in two ways: 

• In the time domain – as a time sequence of readings uk = u(tk). In actual 

measurements, these readings are real numbers, but generally, uk can be complex-

valued.  

• In the frequency domain – as a sum of harmonic functions cos(2fkt) and 

sin(2fkt), with some coefficients ak and bk, respectively. 

The simplest description of transformations between the time- and frequency-domain 

forms is obtained by using the complex exponent function exp(±2ifkt) instead of the 

cos(…) and sin(…). The frequency-domain coefficients then become complex numbers 

denoted Uk. These coefficients can be separated into real parts ReUk (sometimes called 

“in-phase” for electric signals) and imaginary parts ImUk (called “quadrature”):  

Re Imk k kU U i U= + . 

The frequency-dependent series {Uk} (with k = 0, …N–1) is called the complex 

spectrum of the signal. From this complex spectrum, the amplitude and phase spectra at 

frequency fk are obtained: 

• Amplitude spectrum:   ( )k k kAmplitude f A U= = ; 

• Phase spectrum: ( ) rgk k kPhase f A U= = . 
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The phase (argument of a complex number) can be measured in radians (within 

the ( ,k   − or  )0,2k  range) or in degrees (usually within 

( 180 ,180k  −   or  )0 ,360k    ). The spectral amplitude (magnitude of the 

complex spectrum) is a nonnegative real number: 0kA  . 

The spectral amplitude Ak is often strongly variable, which makes it difficult to 

display its values and compare them at different frequencies. To plot amplitudes, 

logarithmic (decibel) scaling is used, by plotting the following quantity: 
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where Aref is some reference amplitude level. For this reference level, the peak amplitude 

( )ref max k
k

A A=  or simple arbitrary selection ref 1A =  are often used. 

The time-domain values {uk} above represent the values of the signal at 

times tk = kt, where t is the sampling interval: 
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and where fs is the sampling frequency and T = Nt is the total time duration of the 

record. Similarly, the spectral quantities {Uk}, {Ak}, and {k} are sampled at N 

frequencies equally spaced at the frequency sampling interval f: 
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 = = .     (3) 

If the signal {uk}is real-valued (as always with physical measurements), then half of the 

values in {Uk} with k > N/2 are complex conjugates to the other half. Therefore, 

only {Uk} values with fk = kf < fN are mutually independent, where fN is the Nyquist 

frequency: 
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This is the largest frequency recoverable by playing back a record discretized at sampling 

interval t. 
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Because of the significance of the Nyquist frequency fN as the largest recoverable 

frequency, it is convenient to sample the frequency domain so that fk ranges              

from –fN to fN, with zero frequency in the middle: fk = kf – fN.  

   k Nf k f f=  − .     (5) 

This is how the frequency sampling is done in this lab. With this sampling, spectral 

values at negative frequencies are complex conjugates of the values at corresponding 

positive frequencies: ( ) ( )*

k kU f U f− = . 

Equation (2) leads to the very important “time- frequency uncertainty relation”:  

      1T f = .      (6) 

This relation means that both time and frequency of the signal cannot be localized 

simultaneously. If some signal is localized within a small time interval T, then in the 

frequency domain, it occupies a broad frequency range f  1/T. Vice versa, if we want 

to record a signal with narrow bandwidth f, then we must use a long recording 

time: T  1/f. 

With any time and frequency sampling {tk} and {fk}The forward and inverse 

Fourier transforms allow calculating the {Uk} frequency series from the time series{uk} 

and vice versa: 
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where tj = jt is the time of the jth sample. These relations show that both {uk}and {Uk} 

contain the same information (describe the same seismic signal), but in different forms 

which allow seeing different aspects of the data. 

Fast Fourier Transform (FFT) 

In computer codes, the multiplications and summations in eqs. (7) and (8) are 

implemented in a clever recursive sequence of operations called the Fast Fourier 

Transform, or FFT. This algorithm evaluates the exact sums (7) or (8) but is much faster 

than their straightforward summation. For N sampling times (and frequencies), eqs. (7) 

and (8) contain N sums with N terms in each, that is an order of N2 operations. However, 
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by utilizing properties of exp(…) functions, the FFT algorithm evaluates all these sums 

by using ~NlogN operations, which is much fewer than N2. 

FFT tool 

Copy to yourself and unpack the zipped archive in lab directory (folder). Open 

Matlab in that directory and execute script fftlab.m. The script should give a large 

window with six plot panels (produced by subplot command in Matlab). If the 

window is too large or too small for your screen, you can adjust the dimensions by 

changing values of field ‘Position’ in the call of function figure() in script 

fftlab.m. The four position values shown like ‘[100,100,1600,1800]’ are the 

coordinates of the lower-left corner of the window on your screen, and the window width 

and height, in screen pixels. You can also search Internet for a method to obtain your full 

screen size automatically (this is very easy). 

The two panels on the left of the figure are the real and imaginary parts of the 

signal in the time domain. The time sampling interval is 1 ms, and the total record is 

32 ms long. In practice, these signals would usually contain several thousand of time or 

frequency points, but we work with only a small example for clarity. 

The two panels in the middle of the figure are the real and imaginary parts of the 

same signal in frequency domain. The panels on the right (with red symbols) show the 

amplitude and phase spectra. Zero time is shown in the middles of the time panels, and 

zero frequency is marked by the open circle in the bottom.  

For simplicity of displays, all plots are normalized to unit peak values of the 

complex signal magnitudes. The scaling values are printed in the titles of the upper 

subplots.   

Operate the script by pressing keyboard keys ‘c’ (to clear the plots) and ‘q’ (to 

exit), and the left and right mouse buttons to construct the desired waveforms or spectra. 

Clicking the left mouse button allows picking intervals of times or frequencies, and the 

right mouse button gives individual points.  

A brief summary of the available commands is printed along the bottom of the 

window.  

Assignments 

Perform the following tests and answer questions. Make plots of your work by 

using figure menu operations in Matlab.  

1) (8%) Note the total frequency range. How does it relate to the time sampling 

interval (1 ms)? What is the sampling interval in the frequency domain? 

 



5 

 

Note that the frequency axis in the middle panels extends from –fN to fN, where fN is 

the Nyquist frequency (highest frequency reproducible by discretization). Therefore, 

the total extent of the frequency domain is the sampling frequency fs = 2fN, which we 

have discussed in class and homework assignments. 

 

2) (8%) Using the left mouse button, put in a 2-ms wide “boxcar” function 

(“square wave”, or a box of 3 samples of equal values) centered on the origin. 

Print the plot out and mark it up. 

Look at the Fourier transform of this signal (shown in the middle plots and spectra 

on the right). How wide is the main lobe if counting from zero frequency? Note that 

the physical frequencies which we measure are the non-negative ones, and negative 

frequencies are just results of “frequency folding”.  

3) (8%) Press ‘c’ to clear the displays and create another boxcar function with 

double width of the square-wave function. How wide is the frequency-domain 

transform now? Repeat with a yet wider boxcar. What property of the Fourier 

transform does this test illustrate? Hint: refer to the discussion of time-spectral 

uncertainty after eq. (3) above.  

4)  (8%) Clear the display and create another boxcar function of the same width 

but shifted to the left, with its rightmost sample at the time origin. How does the 

transform compare to the one before? Describe how the amplitude and phase 

spectra of the frequency-domain signal change. 

5) (8%) Clear again and use the right mouse button to put a single impulse at the 

origin. What does its transform look like? 

6) (8%) Move the impulse 2-5 ms away from the time-zero grid point. Describe 

what happens to the amplitude and phase of the frequency-domain signal. 

Compare results to the observations of step 4). 

7) (8%) Clear again and put in two equal pulses equally spaced around the time 

origin, at –2 ms and +2 ms times. This is called an even impulse pair. What is 

characteristic about its transform? 

8) (8%) Make one of the above pulses negative. This signal is called the odd 

impulse pair. What does the transform look like? 

 

In the next steps, form signals in the frequency domain (i.e., use harmonic signals) 

and see how they look in the time domain: 

 

9) (8%) Put a single pulse at 0 kHz on the real part of the frequency domain. 

Repeat this test for a pulse at –0.2 kHz or +0.2 kHz. Describe the resulting time-

domain signal. Is it real- or imaginary-valued? Is it an even or odd function of 

time? Is it periodic, with what period? What phases do you see in the bottom-right 

plot? 
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10) (8%) Repeat step 9) with imaginary-valued pulses in the frequency domain and 

answer the same questions. 

11) (8%) Repeat step 9) with an even impulse pair at ±0.2 kHz. Answer the same 

questions. 

12) (8%) Experiment with low-pass, high-pass, or band-pass filtering. Put one 

pulse in the time domain, as in steps 5) or 6). By clicking the left mouse button in 

the upper-right plot (amplitude spectrum), you can construct some shape of the 

filter. The filter will be shown by a green line. If you need to clear the filter, press 

key ‘f’, and then you can pick it again. When the filter is shaped, press ‘a’ to 

apply it to both the time- and frequency-domain records.  

Describe in the report how the time-domain and frequency-domain signals, and 

the amplitude and phase spectra change. 

 

Note that in the frequency domain (middle plots), filtering is applied to both the 

positive and negative frequencies. This is necessary to make sure that the filtered 

signal remains real-valued (i.e., physical).  

Also note that the filter implemented here is “zero-phase”, which means that it does 

not change the phase spectrum of the signal and only alters its amplitude spectrum. 

Such filtering does not change (generally) the times of waveform packets on the 

seismogram but only changes their shapes. 

 

13) (4%) Without changing the filter, try putting two pulses of different amplitudes 

and press ‘a’ again. You should see how the filtered pulses overlap in time. If the 

pulses are well separated, you should see that their filtered shapes are similar to 

those in step 12). Is this so? 

Make more experiments with the transform tool if you like.  

Hand in: 

Zipped directory or Word or PDF document containing answers to the above 

questions and images.  


