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Refraction Seismic Method

Intercept times and apparent velocities

Critical and crossover distances

Hidden layers

Determination of the refractor velocity and depth

The case of dipping refractor

Inversion methods:

“Plus-minus” method

Generalized Reciprocal Method

Travel-time continuation

Reading:

➢ Reynolds, Chapter 5

➢ Shearer, Chapter 4

➢ Telford et al., Sections 4.7.9, 4.9



GEOL 335.3

Refraction Seismic Method

Uses travel times of refracted arrivals to derive:

1) Depths to velocity contrasts (“refractors”)

2) Shapes of refracting boundaries

3) Seismic velocities
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Apparent Velocity
Relation to wavefronts

Apparent velocity, V
app

, is the velocity at which the 
wavefront sweeps across the geophone spread

Because the wavefront also propagates upward,     
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Two-layer problem
(One reflection and one refraction)
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Travel-time relations
Two horizontal layers

For a head wave (“often called refraction”):

For a reflection (we'll use this later):
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Critical and cross-over distances

Critical distance:

Cross-over distance:
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Multiple-layer case
(Horizontal layering)

p is the same 
critical ray 
parameter;

t
0
 is 

accumulated 

across the 

layers:
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Dipping Refractor Case
shooting down-dip
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Refraction Interpretation
Reversed travel times

One needs reversed recording (in opposite directions) for 
resolution of dips

The reciprocal times, T
R
, must be the same for reversed 

shots

Dipping refractor is indicated by:

Different apparent velocities (=1/p, TTC slopes) in the two 

directions;

➢ determine V
2
 and  (refractor velocity and dip).

Different intercept times.

➢ determine h
d
 and h

u
 (interface depths).
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Determination of Refractor 
Velocity and Dip

Apparent velocity is V
app

 = 1/p, where p is the ray 
parameter (i.e., slope of the travel-time curve)

Apparent velocities are measured directly from the 

observed TTCs;

V
app

 = V
refractor

 only in the case of a horizontal layering

For a dipping refractor: 

➢ Down dip:                          (slower than V
2
);

➢ Up-dip:                               (faster).

From the two reversed apparent velocities, i
c
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Determination of Refractor Depth

From the intercept times, t
d
 and t

u
, refractor depth is 

determined:
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Delay time

Consider a nearly horizontal, shallow interface with strong 
velocity contrast (a typical case for weathering layer).

In this case, we can separate the times associated with the 

source and receiver vicinities: t
SR

 = t
SX

 + t
XR

.

Relate the time t
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 to a time along the refractor, t
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Plus-Minus Method
(Weathering correction; Hagedoorn)

Assume that we have recorded two headwaves in 
opposite directions, and have estimated the velocity of 
overburden, V

1

How can we map the refracting boundary?
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Plus-Minus Method
(Continued)
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Least Squares method

Drawback of this method – averaging over the 

pre-critical region
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Generalized Reciprocal Method 
(GRM)
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The velocity analysis function:

Introduces offsets ('XY') in travel-time readings in the 
forward and reverse shots;

so that the imaging is focused on a compact interface area

Proceeds as the plus-minus method;

Determines the 'optimal' XY:

1) Corresponding to the most linear velocity analysis function;

2) Corresponding to the most detail of the refractor.
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Head-wave “migration”
(travel-time continuation) method 

S
1 S

2

“Migration” refers to transforming the space-time 
picture (travel-time curves here) into a depth image 
(position of refractor) 

We already used this method in Lab 1b

Refraction (head-wave) migration:

Using the observed travel times, draw the head-wave  

wavefronts in depth;

Identify the surface on which:

This surface is the position of the refractor
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Phantoming

Refraction imaging methods work within the region 
sampled by head waves, that is, beyond critical 
distances from the shots;

In order to extend this coverage to the shot points, 

phantoming can be used:

Head wave arrivals are extended using time-shifted 

picks from other shots;

However, this can be done only when horizontal 

structural variations are small.

x

t
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The “Hidden-Layer” Problem

Velocity contrasts may not be visible in refraction 
(first-arrival) travel times. Three typical cases:

Low-velocity layers do not appear in first arrivals in principle:

Relatively thin layers on top of a strong 
velocity contrast:

Short travel-time branch may be missed 
when using sparse geophone coverage:
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