GEOL 335.3

Elasticity and
Seismic Waves

Concepts of macroscopic mechanics of solids

Rock as 'elastic continuum'
+ Elastic body is deformed in response to stress

+ Two types of deformation (strain): Changes in
volume and shape

Equations of motion
Wave equations
Plane and spherical waves

» Reading:
> Shearer, Sections 2, 3
> Telford et al., Section 4.2.
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GEOL 335.3

Mechanical properties of
continuous solids (or fluids)

s Inseismic waves, we consider only small
deformations (one part out million or less)

+ Particles only oscillate slightly near equilibrium
points, and the behaviour of fluids/gases is similar to
solids

s | try explaining mechanics of continuous solid
media through analogies with a mass suspended
on a spring:

+ Mass of the body m is analogous to density p

» Force vector F is analogous to stress tensor o

+ Extension of the spring x — to strain tensor &

+ Hooke’s law F = -kx — to Hooke’s law for solids
» Elastic constant k — to elastic “moduli” for solids
» Newton’s law ma = F also applies in both cases

» Oscillations of mass m correspond to waves and
multiple forms of free oscillations of solid bodies

In the following slides, we go through these
concepts one by one
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GEOL 335.3

Stress

» Consider the interior of a deformed body:

At point P, force dF acts on
any infinitesimal area dS

Normal /
Stress

dF is proportional to dS
(shown on the next slide)

| Stress, with respect to
Shea direction n, is a vector equal:

stress
lim(dF/dS) (as dS — 0)

» Stress is measured in [Newton/m?], or Pascal
+ Note that this is a unit of pressure

s dF can be decomposed in two components relative
to the surface or n:

+ Orthogonal to the surface (parallel to n; this called
normal stress)

+ Tangential to the surface (shear stress)
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GEOL 335.3

Stress

. Stress, in general, is a tensor:

+ Itis described in terms of 3 force components
acting across each of 3 mutually orthogonal
surfaces

6 independent parameters

Force dF/dS depends on the orientation n, but stress
does not

Stress is best described by a matrix:

Normal stress
Shear stress components

components
@ are symmetric
2y

» Inacontinuous medium, stress depends on (X,y,z,t)
and thus it is a field
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GEOL 335.3

Forces acting
on a small cube

Consider a small cube within the elastic body.
Assume dimensions of the cube equal '1'

Both the forces and torque acting on the cube from
the outside are balanced:

In consequence, the stress tensor is symmetric:
Sij = Gji

The stress tensor is given by just 6 independent
parameters out of 9
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GEOL 335.3

Strain
within a deformed body

Strain is a measure of deformation, i.e., variation of
relative displacement as associated with a particular
direction within the body

It is, therefore, also a tensor
+ Represented by a matrix

» Like stress, it is decomposed into normal and shear
components

Seismic waves yield strains of 10-1°-10°
» So we rely on infinitesimal strain theory




GEOL 335.3

Elementary Strain

When a body is deformed, displacements (U) of its
points are dependent on (X,y,z), and consist of:

+ Translation (blue arrows below)

+ Deformation (red arrows)

. ou,
Elementary strain is simply & = .
j
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GEOL 335.3

Strain Components

However, certain forms of U(x,y,z) dependencies
correspond to simple rotations of the body without
changing its shape:
. CLY, U, . :
+ Deformation in which £ =——2X js actually a rotation
about the 'y" axis. OX 0z

So, the case of ou, _ ou, is called pure shear (no
rotation) OX 0z

To characterize deformation without rotations, only
the symmetric combination of the elementary strains

IS used:
1(oU, oU,
€, == + ,
‘ 2 8x]. ox.

1

€., =¢€

i q»where 1, j=x,y,or z

1 %Jr@Uy 8Ux+6Uz
20 oy Ox 0z ox

ou oU
y 4 + a(Jz

oz oy
oU .




GEOL 335.3
Dilatational Strain
(relative volume change
during deformation)

Original volume: V=06Xdyoz

Deformed volume;
V+oV=(1+¢,,)(1+¢,)(1+¢,) Xy or

Dilatational (volumetric) strain:

POOOLOLOLOOOGS

A:%:(1+ 5XX)(1+3W)(1+522)—1z E T 6y +E,

A=g, =8V, =VU,=divU

s Note that (as expected) shearing strain does not
change the volume
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GEOL 335.3

Hooke's Law
(general)

Describes the stress developed in a deformed body:
F = -kx for an ordinary spring (1-D)

o~ ¢ (in some sense) for a 'linear’, 'elastic' 3-D solid.

This is what it means:

Linear, Elastic (reversible)

During loading and
unloading, material passes
through the same (&,0)
points (reversible process)

Nonlinear, Inelastic

Hysteresis

P
€

During unloading, material
passes through larger
strains (&) and does not
return to the initial state
(irrreversible process)
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Hooke's Law
(general)

For a general (anisotropic) medium, there are 36
coefficients of proportionality between six
Independent values of &; and six o;. These
coefficients form the “rigidity” matrix C:
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s Matrix C also turns out to be symmetric, and so
there exist 21 independent elastic (rigidity)
constants for an anisotropic solid
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GEOL 335.3

Hooke's Law
(Isotropic medium)

For isotropic medium, the strain/stress relation is
described by just two constants:

o; = AA + 2 ug; for normal strain/stress (i=], where 1]
= X,Y,Z)
o;; = 2us; for shear components (i])

» A and u are called the Lamé constants.
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GEOL 335.3

Empirical Elastic Moduli

Young’s (extensional) modulus and Poisson’s ratio

Lamé modulus A practically never acts alone and
IS not observed in experiments

Depending on boundary conditions (i.e., on
experimental setup), different combinations of
A and u are measured. These combinations are
called (empirical) elastic constants, or moduli

Similar to A and g, elastic constants come in pairs:

» Young's modulus and Poisson's ratio:

+ Consider a cylindrical sample uniformly
squeezed or stretched along axis X:

All other G = K'A+2u8xx,
G, =AA+2pe =0,

6.=AMA+2pe_=0=¢, =¢, =

Young's modulus:

x Poisson's ratio:

_‘Often denoted o.
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GEOL 335.3

Empirical Elastic Moduli
Bulk and Shear

» Bulk modulus, K
+ Consider a cube subjected to hydrostatic pressure

Gxx :ny :Gzz =—p;

~3p=30"A+2pA

y’ Bulk modulus: K =
A

Finally, the constant »z complements K in describing
the shear rigidity of the medium, and thus it is also
called the 'rigidity modulus'

For rocks:
+ Generally, 10 GPa< u< K < E <200 GPa

+ 0< v<¥% always; for rocks, 0.05 < v< 0.45, for most
“hard rocks”, vis near 0.25

For fluids, v= and x = 0 (no shear resistance)
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GEOL 335.3

Empirical Elastic Moduli

P-wave and S-wave

@ » From seismic waves, another pair of empirical
moduli is obtained from measured wave velocities:

“P-wave modulus” M corresponds to compression-
extension deformations in one direction only

“S wave modulus” corresponds to shear deformations
(without volume change) transversely to wave
propagation

+ This modulus is the same as u
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=
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Strain/Stress
Energy Density

Mechanical work is required to deform an elastic
body; as a result, elastic energy is accumulated in
the strain/stress field

When released, this energy gives rise to
earthgquakes and seismic waves

For a loaded spring (1-D elastic body),
E = Yokx? =14FX

Similarly, for a deformed elastic medium, energy

density is:
1
5 ZGUSU

I,j=X,y,Z

» Energy density (per unit volume) is thus
measured in:

{ Nevvtonxm} { Newton }_ Pa]

m® m?
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GEOL 335.3

Inhomogeneous Stress

If stress is
Inhomogeneous
(variable in
space), its
derivatives result
in a net force
acting on an
infinitesimal
volume:
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GEOL 335.3

Equations of Motion

(Govern motion of the elastic body
with time)

Uncompensated net force will result in acceleration
(Newton's law):

Newton's law:

o°V, (aaix 00,
pP— = +

. +
ot OX oy

o*'U,. 0 ou o(eoU, oU, d (aU,
p—=—|AMA+2p—" |+ u—| —+— |+ +
ot ox ox oy \ oy ox az oz
,8A o(oU, <°U, oaU. o’'U, o'U, o'U,
=A'—+u— + + + 1 St 5t
ox ox\ Ox oy oz ox oy oz

= (k'+u)§-é~+ uvu
ox

X

These are the £ = (A'+p )-a-é- + V32U
equations of i 0x )

motion for each
of the
components of

U: ;=()U+p.)a—A+ uwv>eu .
oz
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Wave Equation
(Propagation of
compressional/acoustic waves)

» To show that these three equations describe several
types of waves, first let's apply divergence
operation to them:

82A ' 2 2 ' 2
P 5 = (k +p)V A+ uV-A = (K +2u)V A

This is a wave equation; compare to the general
form of equation describing wave processes:

Above, c is the wave velocity.

We have:

P-wave velocity:
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GEOL 335.3

Wave Equation

(Propagation of shear waves)

« Similarly, let's apply the curl operation to the
equations for U (remember, curl(grad) = 0 for
any field:

2

p %curlU =uVZecurlU

» This is also a wave equation; again compare to the
general form:

1 o°
|:C_2¥_V2:|f(xayazat)=0

This equation describes shear (S), or transverse
waves.

Since it involves rotation, there is no associated
volume change, and particle motion is across the
wave propagation direction.

Its velocity:V, <V,

For v=0.25, Yo _ /3
VS
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GEOL 335.3

Wave Polarization

a Thus, elastic solid supports two types of body
waves:
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GEOL 335.3

Waveforms and
wave fronts

Plane waves

» Consider the wave equation:

1 o
|:c—2¥—vz:|f(x,y,2,t)=0

o Why does it describe a wave? Note that it is
satisfied with any function of the form:

7 (x. y,z,t)=<p(x—cr)I f(x,y,z,t)=<r>(x+ct)l

The function ¢() Is the waveform. Note that the
entire waveform propagates with time to the right or
left along the x-axis , x=+ct. This is what is called
the wave process.

The argument of ¢(...) is called phase
Surfaces of constant phase are called wavefronts

»In our case, the wavefronts are planes:
X = phase =ct  [for any (y,2).

» For this reason, the above solutions are plane
waves
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GEOL 335.3

Waveforms and
wave fronts

Non-planar waves

The wave equation is also satisfied by such solutions
(spherical waves):

: f(r,t)zﬁ (Ir|—ct)
n I

' ® Spreading away from pointr =0 Convergingtor =0

SOOOOLO OGS

...and by such (cylindrical waves):

f(p,t):ﬁﬂp—ct) f(p,t):%¢(p+ct)

Jo,

Spreading away from p =0 Convergingto p=0

...and by various other solutions

second solution in each pair?

Question: what is the problem with theJ
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GEOL 335.3

Waves and sources

Homogeneous wave equation describes free
waves:

+ plane, spherical, cylindrical...
» Incoming, outgoing...

» Inhomogeneous equation describes waves
generated by a source:

Zj f = source

» Note that this also includes all of the free waves,
and so one also needs boundary conditions to
specify a unique solution

+ For example, no waves usually come from infinity

toward the source (this is called the “radiation
condition”)
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