GEOL 335.3

Time and Spatial Series

» Data and Transform domains
» Z-and Fourier Transforms

» Reading:
> Shearer, A5
> Telford et al., Sections 4.7.2-6, A.9
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GEOL 335.3

Data Representation
'Domains’

» Data domain:

+ Domain in which data are acquired.

+ Examples: Output of a geophone as a function of time,
value of gravity at a point on a spatial grid

+ Time or space
» Transform domains:

+ Transformed for interpretation and understanding of
certain aspects of the record as a whole.

+» Frequency, 'wave number’, velocity, etc....

» There are numerous transforms for continuous and
discrete signal...

+ We are interested in discrete, numerical transforms
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GEOL 335.3

Z-Transform

s Consider a digitized record that is represented by a
series of N readings: U ={ug, Uy, U,, ..., Uy}

How can we represent this series differently?

s The Z transform associates a polynomial function with
this time series:

U(z)=Uy+Uz+U,z° +U,z° +...

+ For example, a 3-sample record of {1,2,5} is
represented by a quadratic polynomial:

1+ 2z + 522,

 In the Z-domain, the all-important operation of
convolution of time series becomes simple
multiplication of Z-transforms:

U, *U, = U, (2)U,(2)

o We will return to this during the discussion of
convolution.
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GEOL 335.3

Fouriler Transform

e Time series represent the signal as a sum of basis
functions — triangular pulses localized in time:

1

Signal
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0.6 Basis functions gienal

ignal

0.4
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0 2

9,.65333. 0,494026

o Fourier transform represents the signal as a sum of
sin(...), cos(...), or complex exp(...) basis functions with
different frequencies:

" Basis functions |
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GEOL 335.3

Summary of Forward and
Inverse Fourier Transforms

Forward Fourier Transform (from time to
frequency domain):

frequency f = kAf time t = mAt

The Inverse Fourier Transform (from frequency to
tine domain) is given by a similar formula:

27zk

(2)

frequency f = kAf

Af =
N

5
T

Exercise: Prove this (plug (1) in (2) above)
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Nyquist frequency

Recall the frequency folding and aliasing phenomena
we discussed before

These phenomena are simply due to the fact that the
time-domain signal u(t) is real-valued, but the
frequency-domain U(f) is complex-valued.

s This means that the {U,} series contain twice more
numbers than {u;}

Therefore, half of the values in {U,} must always be
related to the other half. This is how they are related (this
is the frequency folding):

U (f,—f)=U"(f)

Thus, it is sufficient to know U(f) only up to Nyquist
frequency
f N 1
f= == Af=——
2 2 2At

At f > f, the spectrum U(f) is a “conjugate mirror
image” of the spectrum below fy
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GEOL 335.3

Spectra

In frequency domain, the signal U(f) becomes
complex-valued, and it varies with frequencies
rather than times:

u(t)=U(f)=A(f)e""

A(f) i1s called the amplitude spectrum, and &) is
the phase spectrum of the signal.

A(f) shows the amplitude of the particular
harmonic component of the record, and &f) shows
Its relative phase

A(f) is measured in the same units as the
amplitude, and &) is dimensionless (or radians,
often also expressed in degrees: 180° = x).
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Sample Fourier Transforms

@ Compare the transforms in the boxes

box,(t)

t A l/-\r‘“f/a 2m/a /\ Yy w

—8n/a~~—"67/a \/zm 0 \/mm T

(a)

sinc(at/2) af2n

sinc (1ar)

From Sheriff, Geldart, 1995
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Spectra of Pulses

a Forapulse of width T s, its spectrum is about 1/T Hz in
width:
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From Yilmaz, 1987
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Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient
algorithm to compute the Fourier transforms

It works with a series of N samples that can be
efficiently factorized in terms of prime factors. The
best-known, classic FFT uses N = 2",

FFT utilizes trigonometric relations such as:
e—iZa _ (e—ia )2

Therefore, the sums computed for frequency f can be
utilized to compute the FFT's at frequency 2f, and so on.

As a result, FFT computes all frequency points in
~Nlog,N steps instead of N2

+ ~10 times speedup for N = 1024
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