
Gravity methods 1 - Key points

 Gravitational attraction

 Gravity measurements

 Basic models of gravity field

 Gravity reduction 

 Corrections and anomalies

 Calibration, Drift, Latitude, Free air, Bouguer,  and Terrain corrections

 Relation of Bouguer gravity to topography

 Correlation and anti-correlation

 Isostatically supported topography

GEOL384/334 – Gravity basics 11

 Reading:

 Reynolds, Chapter 2

 Dentith and Mudge, Chapter 3



Gravitational attraction

 In this course, we assume that you are familiar with the “Newton’s law of universal 

gravitation”

 This law states that any two objects are pulled together by a force of attraction proportional to their 

masses and inversely proportionally to the square of their spatial separation:
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 If one of these bodies is the Earth of mass MEarth,  then this downward-directed force vector (often 

called the weight) is

m=F g

where Earth
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= =g

 The general goal of the gravity method is to measure small spatial variations of g and to invert 

them for variations in the distribution of mass within MEarth

G  6.672610-11m3/kg/s2 is the 

“Universal gravitational constant” 



Physical meaning of g

 What is the physical meaning of g? 

 The unit of g is acceleration (m/s2), and consequently it is often called “gravitational acceleration” (e.g., 

Wikipedia or section 3.2 in Dentith and Mudge)

 However,  I do not like this definition of g as acceleration.  “Acceleration” is a kinematic property of 

motion of some body, which is subject to various other conditions. For example, the acceleration of 

Newton's apple equals g only when the apple is not affected by other forces. By contrast, in a common 

gravity meter, the action of g is compensated by the elastic force of the spring, and we cannot talk about 

acceleration. 

 In reality, g is not acceleration but simply the strength of gravity field, analogously to E in electrostatics. 

This strength is defined so that the gravity force acting on a gravitational mass mg equals
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This is regardless of any other forces or acceleration, and mg is analogous to electric charge q.

 If no other forces are acting on the body, it will obtain acceleration by the second Newton’s law:

gm=F g

g

i i

m
a

m m
= =

F
g

where mi is the inertial mass.

 The equivalence between mi and mg is a very interesting but separate question (answered in 

Einstein's theory of general relativity – these masses are indeed equivalent) 



Values of g

 In SI units, the strength of gravitational field is measured in m/s2, and in gravimetry – in 

“Gal” (“Galileo”):
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 In these units, the “standard gravity (attraction on an “average” spherical Earth) is denoted g0

and defined as

0 980.665 Galg =

 The typical range of interest in gravity variations is around tens of mGal (“milli-Gal”). In 

mineral exploration, a “gravity unit” simply denoted ‘gu’ is often used (Dentith and Midge):

 This unit has a simple practical meaning:

 In these lectures, we will use mGal as the primary gravity unit

1 gu = 0.1 mGal

2

mm
1 gu 1

s
=



Measurement of gravity
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 The popular Lacoste Romberg relative gravimeter consists of a mass mounted on a freely 

pivoting beam supported at point O on the base of the instrument (Figure below). The mass is 

connected to point A above the support by a “zero-length spring”, which is constructed so 

that its elastic force is proportional to its total length L: F kL=

(The “zero-length spring” is constructed by using specially 

twisted wire or  by combining pretensioned springs)

 By adjusting the distance z by rotating knobs on top of 

the instrument, the beam is leveled horizontally

 Due to the selected geometry (see figure), the vertical 

component of elastic force equals  

cos cos
cos

z
F k kz 


= =

(note that it does not depend on , and so this angle is not 

important)

 The elastic force compensates the weight of the mass:                     

and therefore g is obtained:

 Thus, small variations of g can be detected by precise measurement of the 

compensating vertical displacement of the upper end of the spring z

mg kz=
k

g z
m

=



Lacoste-Romberg gravimeter
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 This instrument performs relative gravity measurement, which 
means that the reported quantity (dial reading z) is measured 
relative to an arbitrary reference level. The scaling factor k/m is 
also arbitrary in practice

 The elasticity of the spring is sensitive to the operating 
temperature, barometric pressure, and ageing 

 Because of the above reasons, this gravimeter requires periodic 
calibration by comparing the readings on its dial (basically, values 
of z) with absolute gravity values

 Prior to measurement, the instrument needs to be carefully 
leveled on the ground, for which an aluminum plate, bubble level, 
and leveling screws/knobs are used (picture on the right)

 Side note:  Seismometers used for recording “long-period” waves 
and free oscillations of the Earth (ground oscillations resulting 
from large earthquakes, with periods from about 30 seconds to 
about an hour) are designed in the same way 

 For longest periods, the pivoting beam may be several meters long.

Leveling plate and 

knobs



Gravity reduction
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Observed gravity = attraction of the reference ellipsoid of uniform 

average density (figure of the Earth, g0)

+ effect of the atmosphere (for some ellipsoids)

+ effect of the elevation above sea level (free air)

+ effect if the “average” mass above sea level (Bouguer and terrain)

+ effect of sphericity of the Earth (Bullard B, for airborne gravity)

+ time-dependent variations (instrument drift and tidal)

+ effect of moving measurement platform (Eötvös)

+ effect of masses near the base of the crust that would support 

topographic loads (isostatic)

+ effect of variable density of the crust and upper mantle (“geology”)

If we model and 

subtract several of 

these terms from 

the data…

…then the 

remainder is the 

corresponding 

“anomaly” (for 

example, “free air” 

or “Bouguer” 

gravity)

 Subtraction of the above correction terms from the data is called “gravity reduction”

 The measured gravity is modeled as a superposition of several effects shown below

 Models of these predictable effects are called “corrections”:



Gravity anomalies

 Gravity reduction consists in subtracting from the observed gravity one or several terms  

listed in the preceding slide. This subtraction removes (often strong) gravity effects of known 

structures and results in an “anomaly” (gravity signal unaccounted for by the known average 

structure)

 For example, the “Bouguer” anomaly is obtained from observed data gobs as: 
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Bouguer obs free-air Bouguer 0g g g g g = − − −

where g0 is some reference field value that we can ignore, and models for gBouguer and gfree-air

are discussed later.

 To understand the effects of the various structures and corrections for them, in the 

following slides, we first consider models of three elementary structures:

1. Flat sheet, 

2. Point mass or a sphere, and 

3. Linearly distributed mass or a cylinder.



Basic gravity model #1 - thin sheet

 Most corrections mentioned above are based on models of gravity produced by certain 

standard bodies. These models are easiest to derive from Gauss’s law

 The simplest of these models is the thin sheet (often called Bouguer slab) Consider a uniform 

thin sheet of surface mass density s = M/A

 Because of symmetry, gravity is constant above and below the sheet and directed toward it (Figure 

below)

 Enclose a portion of the thin sheet of area A in a closed surface. From Gauss’s law, the total flux of g

through the surface equals:

GEOL384/334 – Gravity basics 19

2 4gA G A s= −

 Consequently, the gravity above a thin sheet of mass (and also below it, see figure) equals:

 where in the two additional forms of this formula, h is the thickness of the sheet and r is the 

usual density of the material

2 2 2
M

g G G G h
A

 s   r= = =



Basic gravity model #2 – point source or sphere

 A point of mass M is the typical way of thinking about a localized density anomaly within the 

subsurface

 Similarly due to symmetry, gravity g is constant at constant distance from the mass, and directed toward 

it 

 In this case, the surface used in Gauss’s law, would be a sphere centered at the mass. The area of the 

sphere is (right?), and therefore the Gauss’s law gives:
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24 4g r GM  = −

 Therefore, the gravity at distance r from a point mass (and also from a hollow sphere 

or a spherical body with arbitrary dependence of density on radius) equals (Newton’s 

law of gravity):

24A r=

2

M
g G

r
=

2
ˆ

M
G

r
= −g r

 In a more complete form including the center-directed orientation of vector g,  this 

formula is: 

where       is a unit vector pointing away from the mass.    r̂



Gravity outside and within spherical Earth

 The preceding relation for g(r) can be obtained from the potential U as                      (see 

the Introduction lecture), with U also depending on radius r only as
U= −g
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M
U G

r
= −

 This formula is good outside of the Earth where density r = 0. Inside the Earth (r < R, where 

R is the Earth’s radius), only its spherical portion of radius r causes gravity, and therefore the 

gravitational acceleration g is proportional to r:    

3

M
G

R
= −g r

2

32

M
U G r const

R
= +…and the potential:

 Self-assessment question:  Assuming all mass of a planet is concentrated on its surface, what 

is the gravity (g and U) inside and outside of this planet? 

Extra note for GEOL334



Point or sphere below surface

 The point or spherical-body source is the typical model used for interpreting gravity data

 In this case, only the downward vertical component of g from the preceding slide is measured, and it 

equals, in several forms (see Figure):
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Basic gravity model #3 - line (pipe, cylinder) source

 This model is used to represent linear structures such as dikes

 Consider a uniform thin rod of linear mass density g

 Enclose a portion of this rod of length L in a closed cylinder of radius r

 Again from Gauss’s law, the flux of g through the cylinder is:
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2 4g rL G L  g =

 Therefore, the gravity decays as 1/r with distance r from a line source (compared with 1/r2 for 

point source!):
2

ˆ
G

r

g
= −g r

 Accordingly, the potential increases logarithmically with r: 

2 lnU G r constg= +

Extra note for GEOL334

 Vertical-component gravity measured on the 

surface (see Figure):

2
2

2 2

cos 2 2
2 cos 1z

G G x
g g G

r H H x H

 g g
g 

 
= − = = = − 

+ 



Basic gravity model #4 – a 2-D thin band

 This model is useful for modeling arbitrary 2-D structures, and it also has a similar 3-D 

extension. Note that the derivation is very simple if we use the concept of potential:

 Consider an arbitrary horizontal band of mass with areal density s shown in the Figure below. If we 

split it into narrow strips of with dx, the linear density of each narrow strip will be g = sdx.  From the 

last formula in the preceding slide, the measured g is a sum of (-gz) produced by the elementary 

strips:
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Here,  is the inclination angle of 

the mass when viewed from the 

observation point



2-D thin band (continued)

 By expressing coordinates x through the inclination angle , we have: 
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= =and

and therefore the integral is simply (see Figure below)

 Thus, the measured vertical-component gravity is proportional to the surface mass 

density s and angle  subtended by the band from the observation point.

 Note that for an infinite thin slab,  =  , and we have the formula                   

shown before. 
2g G s=



Basic gravity model #5 – thick sill with a vertical edge

 Consider a horizontal half-layer (sill) of arbitrary thickness and density contrast r

 We want to know the position, shape, and width of its gravity anomaly on the surface, g(x) 

 Consider a thin layer of thickness dz within the sill (purple below). Its surface density s = rdz

and gravity (from preceding example):
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( ) 2 arccot
x

g x G
z

r=

Extra note for GEOL334

 The gravity of the sill is an integral:  ( )
2

1

2 arccot

z

z

x
g x G dz

z
r= 



Thick sill (continued)

 The integral                           can be evaluated by replacing variable u = z/x

and integration by parts:
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Extra note for GEOL334
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Summary of basic models

 Note that the width of 

anomaly or range of 

transition in g(x) 

corresponds to the  depth 

to the target.
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Gravity corrections

 In the following slides, we discuss several types of gravity corrections

 Recall that “gravity corrections” represent models of known (often strong) effects which 

are subtracted from the measured data in order to clean up the small “anomalies” of 

interest
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Gravity correction #1 – Calibration

 Calibration consists in transforming the readings on instrument dials into actual 

gravity values (mGal)

 Calibration is the only correction involving multiplication of values. It is performed by  

interpolating the adjacent values in the instrument calibration table. 

 Here is a part of this table for our G267:
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Counter reading Value in mGal Scaling factor for this 

interval

4300 4502.91 1.04853

4400 4607.77 1.04853

4500 4712.62 1.04848

4600 4817.47 1.04845

4700 4922.31 1.04844

4800 5027.16 1.04855

4900 5132.01 1.04855



Gravity correction #2 - Drift

 The largest correction is for the drift of the measured quantities with time. There are four 

major causes of such variations:

1. Effects of Earth’s tides. Because of gravitational attraction by the Moon and centrifugal force in the 

Earth-Moon system rotation, there are large gravity variations of about 0.1 mGal over 6 hours. 

 This is the largest drift (time-only related) effect, but it can be predicted within 0.01 mGal at most 

stations, and therefore it can be easily corrected for. In small and quick surveys, by returning to the 

base station often enough, tidal variations can be measured together with the other drift factors.

2. Instrumental drift. Gravity instruments are extremely sensitive to their internal temperature, 

mechanical stress, and curing of springs, within the instrument. 

 For example, in the gravity meter we use in our field schools, we start warming it up about a week 

before operation, but the temperature keeps increasing for a couple weeks of the survey.  As a 

result, the recorded values of gravity g show a downward trend with time.

3. Changes in barometric pressure also affect the instrument., although its significance is significantly 

smaller (estimated as < 0.3 mGal).  We usually treat this form of drift as part of the general, empirical 

time-related drift.

4. Operator errors. Operator errors are also a sort of a “time” effect. This effect is corrected for by 

performing repeated measurements at some stations, and particularly at the selected base station.
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Multi-year drift of our gravity meter

 During our field schools, the Lacoste Romberg G267 gravity meter usually drifts by  a1 

0.1- 0.2 mGal/day

 This drift is much larger than the gravity variation this meter can see (0.01 mGal)

 Also note large variations in the readings (term a0) after the instrument was serviced
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Data collection and 

plot by Jim Merriam



Drift model

 As any correction, drift correction should be based on some model for it.  A model for drift 

can be given by a drift-noise term d dependent on observation time tobs added to the gravity 

gs at the current station:
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( ) ( )obs obss su t g d t= +

 For d(t), some simple dependence is commonly used, such as a polynomial function:

( ) 0

1

n
k

k

k

d t a t a
=

= +

 To determine parameters ak, the following procedure is used:

 During data acquisition, periodically (every 1-2 hours) return to the base station the base station and 

perform multiple repeated readings there. Also, start and end each survey day at the base station. 

 By fitting readings at the base station as function of time, invert for ak by using various more or less 

sophisticated methods such as interpolation or the Least Squares.



Gravity drift from UofS geophysics field school

 Example of (mostly tidal) drift measured over 5 hours of recording

 Periodically repeating measurements at the base station (at UofS test site) and another “new base” 

(symbols with error bars) to form the drift curve (blue and red line)
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Data collection and 

plot by Jim Merriam



Gravity correction #3 – Latitude

 For a uniform Earth, gravity is the lowest at the equator and increases with latitude. This 

increase is caused by two reasons:

 Centrifugal force due to rotation of the Earth. This force acts as additional gravity gc directed upward, 

away from the rotation axis, and increasing as sin2(), where  is the colatitude (90 degrees minus 

latitude) 

 Because of the same centrifugal force, the distance from the center of the Earth is greater at the 

equator, and consequently the gravitational attraction is weaker.  

 The amount of this reduction can be accurately calculated for any reference ellipsoid 

(approximation for the shape of the rotating Earth). For example, for  the “IGF30” reference,  

the latitude effect is (in mGal/radian): 
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( )978.049 0.0052884sin 2 0.0000118sin 4
g

 



= −  +



 At latitude = colatitude 45, this variation of gravity gives the latitude correction  

 lat 0.8118
mGal

g s km
km

 
= −  

 

 where s is the southward distance from the base station in km

 Thus, the latitude effect is large, even in small surveys.



Gravity correction #4 – Free Air

 The “free air” correction is simply correction for elevation (height) of the observation point 

above the global reference surface called “the geoid”. Roughly, the geoid is the mean sea level.

 The elevation effect is readily obtained from the formula for the gravity field  of the sphere 

(earlier in this lecture):
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 Therefore,  the change of g due to an increase of elevation r = h equals

( ) 2

M
g r G

r
=

 For practical estimates, this gives with good accuracy:

 where h is the variation of elevation of the observation point in meters

free-air 3
2 2

M r
g G r g

r r


 −  = −

 free-air 0.3086
mGal

g h m
m

 
 −   

 



Importance of the free-air (elevation) effect

 The “free-air” gradient of gravitational attraction imposes stringent requirements on the 

accuracy of the coordinates in a gravity survey

 In most common gravity meters, the reading sensitivity is about 0.01 mGal. From the formula 

in the preceding slide,  gfree-air = 0.01 mGal for h  3 cm. 

 Thus, measurements of ground elevation must be quite accurate in gravity surveys.
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Gravity correction #5 - Eötvös
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 The Eötvös correction is necessary when measuring gravity on a  moving platform like a 

vehicle, ship, or an airplane

 The Eötvös gravity is caused by the Coriolis force, which is due to the rotation of the Earth 

and acts like a gravity force directed perpendicular to both the direction of motion and 

Earth’s axis. 

 Similar to free-air and tidal gravities, this force is predictable with great accuracy. The formula for the 

vertical component of this force (which affects gravity measurements) is:

Extra note for GEOL334

( )
2

2 cos sinE

E

V
g r V

R
  = − −

 where V is the speed of the moving platform, RE is the distance from the center of the earth,  is the 

angular rotation velocity,  is the latitude, and  is the angle between the direction of motion and 

the true north.



Importance of Eötvös correction
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 In the formula on the preceding slide, the first term is basically the additional centrifugal 

force due to the movement of the platform in the direction of rotation. Both of these 

forces are often large:

 For an airplane moving east along the equator (V = 100 m/s,  = 0,  = 90), the first term equals  

1454.4 mGal, and the second term is 156.99 mGal. 

 These values are huge for gravity measurements, and so the heading direction and speed of the 

aircraft needs to be known very precisely.

 For a ship moving at 5 m/s, these terms are 72.27 mGal and 0.39 mGal, respectively.

 These are also significant forces, and the heading of the ship also needs to be precisely known 

when doing gravity measurements

Extra note for GEOL334



Gravity correction #5 – Bouguer
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 The “Bouguer” correction accounts for the gravitational attraction of a uniform flat slab of 

rock between the reference geoid and the observation position

 The gravity of a uniform flat layer of thickness H is readily obtained from the first “basic 

model” in this lecture:

Bouguer 2g G H r=

 Thus, Bouguer correction is about 40% (and opposite sign) of free-air one

 Bouguer correction (subtraction of gBouguer from data) can be understood as “removal” of a 

flat layer of uniform rock beneath the point of recording.  

 Together with the free-air correction, Bouguer correction produces an effective observation on the 

surface of the reference geoid without topography

 Thus, after these corrections, the remaining features in the data should be due to subsurface anomalies 

 Bouguer 0.1119
mGal

g H m
m

 
=  

 

 With a mean crustal density of  r =2.67 g/cm3, this effect is



Bullard corrections
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 The flat-slab Bouguer correction is sometimes also called the “Bullard A” correction

 At large elevations (in airborne surveys), sphericity of the Earth becomes important. The 

Bouguer correction is then complemented with sphericity (“Bullard B”) correction (you 

will see its form in GEOL481)

Extra note for GEOL334



Gravity correction #6 – Terrain

 The “Bouguer” correction assumes a uniform density below the observation level

 Therefore, it overestimates the attraction of the valleys below this level and upward  “pull” of 

the mountains above it (Figure).

 Therefore, the effect of terrain topography differs from gBouguer by  some gterrain < 0.                 The 

“complete Bouguer” correction is given by:
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Extra note for GEOL334

complete Bouguer obs free-air Bougue terrainr 0g gg g g g− = − − −

gterrain(x,y) is usually 

modeled from digital maps 

of surface topography by 

integrating “basic solutions” 

like those described at the 

beginning of this lecture  



(Un)correlation of Bouguer gravity with topography
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 Generally, after proper Bouger and terrain corrections, we expect gravity anomalies to be 

related to structures at depth and uncorrelated with topography.

 In the next lecture,  we will use this principle for estimating terrain density.

 However, in some cases, this uncorrelation is not the case. Usually, we have a lower-density 

layer (for example, Earth’s crust) overlaying a denser rock (mantle). Then, depending on the 

thickness of this layer, there are three different cases:

1. The overburden layer is of constant thickness.  In this case, the layer has almost no effect on 

gravity anomalies observed on the surface, and the measured gravity is due to the deeper crust.

2. The overburden thickness anti-correlates with surface topography (bedrock is shallower at high 

elevations). In this case, Bouguer correction does not remove the effect of elevation completely, 

and the Bouguer gravity is positively correlated with topography

3. The overburden thickness correlates with surface topography. In this case, the Bouguer gravity is 

negatively (or anti-) correlated with topography.  An important example of this case is the 

isostatically-supported crustal topography discussed in the  next slides



Large-scale correlations of gravity with topography
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 Look at the Bouguer-corrected gravity map of Canada below. There is a large negative gravity 

anomaly over the high-topography Rocky Mountains (purple) and significant positive anomaly 

over the continental shelves (yellow)

 This occurs because the large-scale topography (at  > 100-km scales) is isostatically supported.  This 

case is discussed in the next slide.



Isostatically supported topography

 For a perfectly isostatically compensated crust, high surface topography is supported by 

buoyancy of a large crustal root (Figure below)

 The condition of buoyancy means that above a certain compensation level (dashed line), the 

weight (and therefore mass) of the rock column is the same at all locations

 From our derivation of Bouguer gravity above, this constancy of mass means that the gravity 

above an isostatically-supported crust is constant regardless of its topography and subsurface 

structure
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 Thus, for isostatically-supported structures, it is better to look at free-air corrected images, 

and Bouguer correction over-corrects the observed gravity

 For partial isostatic compensation, the effect of the mass at the base of the buoyant layer 

can be included in a separate isostatic gravity correction


