
 

1 

GEOL 384.3 and GEOL 334.3 

Lab #5: Resistivity in modelling tank 

 

In this lab, you will collect resistivity data collected in table-top modeling tank in Rm. 265 Geology 

(the room where we teach most of our Geophysics classes) and analyse several types of array configurations.  

The modeling tank (Figure 1) makes a two-layer model of the subsurface - water of some resistivity and 

thickness and an infinitely resistive basement (the bottom of the tank). The tank is long but not wide 

compared to the depth, and so we do not have a truly 1-D model (1-D means a layered structure depending on 

depth only and infinitely extending in both horizontal directions). In particular, you will see that when the AB 

distance is large, the sides and end of the tank distort the sounding curve a little. 

The city has information on the resistivity of river water and tap water on its website. Tap water 

resistivity is about 27 Ohmm and varies a little during the year. The purpose of this lab is to see if we can 

recover these values from a sounding. 

 

 

Figure 1. Electrical modeling tank in Geology 265. Note the four electrodes on top in 

an A-M-N-B configuration for Wenner sounding 

 

To begin the experiments, set up the tank by filling it with water so that the electrodes just reach the 

water. Before starting the measurements, the resistivity and depth of the water in the tank were measured.  
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As in lab 4, the resistivity  of the medium will be obtained from measured voltage V between a pair of 

potential electrodes M and N and current I between a pair of current electrodes A and B. The apparent 

resistivity is calculated by first calculating resistance R and multiplying it by the geometry factor k: 

a Rk = ,       where resistance         
V

R
I

= .     (1) 

The geometry factor is measured in meters and depends on the mutual positions of the electrodes and their 

spacings. 

The SYSCAL resistivity meter (Figure 2) contains a source of current, voltmeter, and a programmable 

calculator for the values of R and k. During a current injection, the meter measures V and I and reports the 

values of R and . 

 

 

Figure 2. SYSCAL Junior resistivity/IP/SP meter used in field schools and labs. 

 

 However, reprogramming the meter for every injection takes significant time. Instead of this 

reprogramming, we will program the meter to always  use k = 1. This k = 1 corresponds to the geometry factor 

of a Wenner array with spacing MN = 1/2 = 0.1592 m, and so we used this setting in all our measurements, 

even those in dipole-dipole and Schlumberger configurations. With k = 1, regardless of what array type or 

spacing we use, the apparent resistivity reported by the meter numerically equals the resistance it measured.  

For each of the specific arrays, you will calculate the geometry factors yourself. Multiplying the 

resistance by the tabulated geometry factor will then give you the apparent resistivity. 
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Assignments 

Wenner array 

For a Wenner array the electrodes are configured in a linear sequence A-M-N-B with equal spacings 

denoted a. The geometry factor for this array is 

                                        2k a= .          (2) 

This factor is already calculated in Tables 1 and 2 in the worksheet file. 

First, set up the electrodes up in a simple Wenner array with MN = AB/3 = 0.05 m.  

1) Measure the resistances with injection voltages of 100 V, 50 V, and also smaller voltages 

using an additional variable resistor. Place the results in Table 1. 

2) After that, with a 50 V source, measure the resistances again with pulse widths of 0.5 s, 

1 s and 2 s. Put the results Table 2 in the worksheet file. 

For the remainder of the lab, use pulse widths 1.0 s. 

3) Calculate the apparent resistivity values and write them in the last columns of Tables 1 

and 2. As you see from these tables, resistivity should not vary with input voltage or pulse 

duration by more than about one percent.  

You may see some variation with injection voltage, particularly at very low and very high voltages. 

These variations occur because our electrodes are so small that the current density near them is so 

large that it physically changes the electrodes during an injection. Note that with such tiny 

electrodes, current densities are thousands of times larger than they would be in the field. 

For the next question, move the A electrode further away (inline) by 1 cm and leave the others 

fixed. Measured the resistance R again (again, remember that it is reported as “resistivity” by the 

meter). In the second test in Table 3, move the A electrode back to its original position and 

increase the separation on MN by 1 cm.  

4) Examine the sensitivity of resistivity to errors in the positions of electrodes and fill the 

empty columns of Table 3.  

For each of the above shifts, calculate and add in Table 3 values of percent change in the 

electrode distance AB (or MN where the potential electrode was moved). For in-line shifts, the 

shift of electrode is simply added to the respective distance AB or MN, and for cross-line shifts, 

you will have to use the Pythagoras theorem.  

Next, for each array perturbation in Table 3, calculate the percent changes in apparent 

resistivity relative to the original resistivity measured at 50-V voltage in Table 1. 

5) Based on the above trials, answer this question: If you want a Wenner resistivity survey to 

be repeatable to, say, 5%, how accurately do you need to position the A, B, M, and N 

electrodes? These are called in-line positioning errors.  

6) Repeat the sensitivity measurements in question 3) by moving the electrodes cross-line by 

1 cm (take them out of the holder and hold off the line with insulated tongs. If you try this, 

make sure the voltage is only 50V and be careful what you touch!). Put the also in Table 3.  

Question: Are the lateral errors (errors in positioning perpendicular to the line) as important 

as in-line errors? 

lab5_worksheet.xls
lab5_worksheet.xls
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7) Further in Table 3, test the effects of resistive elements placed near the array. Move the 

electrodes back to their original configuration and measure again, this time holding a resistive 

element at positions indicated in Table 3. Again, make sure the voltage was only 50V and be 

careful with what you touch!  

The effects of embedded heterogeneity are called lateral effects if the conductor or insulator is near 

an electrode but off the line of electrodes. If the heterogeneity is inline with the A-M-N-B array, it 

is the in-line effect.  

8) Looking at the results, answer the following questions:  

a. Which inhomogeneities are more important for resistivity measurement– those 

oriented cross-line or in-line?  

b. Which inhomogeneities are more important – those located between M and N, A and 

M, or outside of the array (A-M-N-B)?  

c. Overall, are cross-line and in-line effects more important at the injection or 

measuring electrodes? 

 

Sounding using Schlumberger array 

A Schlumberger sounding uses a small MN (potential electrode separation) and an expanding AB 

(current electrode separation). In the sense used here, small MN means that MN is small enough that the 

apparent resistivity is independent of MN. You can determine this in advance by modeling, but a common 

rule-of-thumb is that you should have MN/2  1/5 AB/2. However, in practice, MN/2 can often be allowed to 

be considerably larger than this.  

Note that when describing electrode arrays, half-spacings are often used (AB/2 and MN/2) because the 

half-spacings are conveniently measured from the middle of the array where you usually sit with the recorder. 

These spacings also give the depths of the corresponding points in pseudo-sections.  

The geometry factor for Schlumberger array is 

                    

2 2

2 2
2 2

4 2

2

AB MN

AB MN
k

MNMN




   
−   −    = = .        (3) 

where the second formula is useful when using halves of the electrode spacings. 

Because of the relatively large distance AB, the apparent resistivity in Schlumberger sounding are 

almost independent of points M and N, and so the change in apparent resistivity when MN is changed should 

be small.  Changes of apparent resistivity after reconfiguration of the array are called “clutches”.  Clutches 

may also be caused by lateral offsets, such as offsets of electrodes, topography, or cross-line variations of 

conductivity (metal bodies, fences).  

9) Perform Schlumberger sounding using the positions of electrodes listed in Table 4 in the 

worksheet file. Fill the column of resistances shows the variations of array shape during our 

Schlumberger sounding in the modeling tank.   

lab5_worksheet.xls
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Distances AB/2 and MN/2 are measured from the midpoint of the tank (0.500 m on the tape). Note 

that AB increases four times before MN increases, and then we increase MN and repeat the reading 

with the previous positions of A and B. Also notice that there are eight AB increases before AB 

changes by a factor of ten. Six moves per decade is a minimum, otherwise you will not have 

enough points to adequately define the shape of the apparent resistivity curve. Eight or ten moves 

is a maximum for the sake of efficiency. This is about what we do in this lab. 

10) Calculate the missing column of apparent resistivities in Table 4. 

Graph the apparent resistivity vs. AB/2 in log-log scale (on log/log paper or by software). 

How many layers are evident? Estimate the resistivity of the water from your sounding 

curve. This resistivity should be seen from the apparent resistivities at the smallest AB. Does it 

agree with the known resistivity of the tap water?  

11) Determine the salinity of water in the tank using the table of salinity vs. resistivity 

supplied in the preceding lab. Here is that table again: 

 

Table X. Salinity and resistivity of water at 20C 

 

Salinity (g/l) Resistivity, w (m) 

0.07  74.5 

0.7 7.8 

2.5  2.3 

7.0  0.88 

70.0  0.11 

 

 

Sounding using Wenner array 

In Wenner sounding, all electrodes are always kept at the equal spacing MN = a, and this  spacing is 

increased to perform a sounding. Since all four electrodes are moved each time, the Wenner is more labour 

intensive in the field than the Schlumberger. The geometry factor for Wenner array is given in eq. (2), and it 

is calculated for our sounding experiment in Table 5 in the worksheet file. 

12) Perform Wenner sounding and write resistance results into Table 5. 

13) Calculate the column of apparent resistivities in Table 5. Plot these apparent resistivities 

as for Schlumberger array sounding. 

You will see that the apparent resistivities for Wenner array are not the same, despite the fact 

that the tank is exactly the same. The reason for this is that apparent resistivities are a function 

of the geometry of the array as well as the actual resistivities in the ground. However, rigorous 

inversion of these two soundings would give fairly similar models. 

 

lab5_worksheet.xls


 

6 

 

Sounding using a dipole-dipole array 

14) Next, set the equipment and perform a dipole-dipole sounding profile through the tank, 

with a conductive or resistive target in the middle. Record the results in Table 6 in the 

worksheet file. 

In a dipole-dipole array, the electrodes are arranged in sequence A-B-M-N, with AB and MN 

spacings relatively small and equal, and MN being moved away from AB in steps equal to the 

AB spacing. The geometry factor is 

         ( )( )1 2k MN n n n=  + + ,        (2) 

where n BM MN= is the number of MN spacings between the lead current electrode (B) and 

the trailing potential electrode (M).  

Table 6 also contains another geometry factor k which has been computed by Prof. Sam Butler 

using modeling software (Comsol) to allow for the restricted geometry of the tank. If you use 

this number, the apparent resistivities will look like if the tank had infinite dimensions. 

15) Calculate the column of apparent resistivities in Table 6.  

 

Pseudo-section  

A pseudo section is a color or contour map of apparent resistivity vs. “pseudo-depth” and “pseudo-

position”. The goal of selecting these pseudo-coordinates is to make the pseudo-section looking generally 

close to the true resistivity section in a simple layered structure (i.e., the different levels of resistivity shown at 

close horizontal positions and reasonable depths). For symmetric arrays, the horizontal position (called 

pseudo-position) is the middle of the array. For dipole-dipole arrays, the pseudo-position is taken at the 

middle of segment B-N (middle of the whole four-electrode arrangement).    

To define the pseudo-depth, note that when you collect an apparent resistivity with a given electrode 

spread, half of the current flows between the surface and the midpoint of the array. Since the horizontal size 

of this current is AB/2, the ’averaging center’ (vertical size of the fan of current streamlines) might also be 

something like depth = AB/2. This half-distance between current electrodes is taken as the pseudo-depth for 

Wenner array. 

 For a double dipole (dipole-dipole) array, the pseudo-position and pseudo-depth are determined from 

the positions of the centres of the current- and potential-electrode arrays: ( ) 2C A Bx x x= +  and 

( ) 2P M Nx x x= + . The pseudo-position is then ( ) 2C Px x x= +  and pseudo-depth 2P Cz x x= − . For a 

perfectly symmetric array as in our lab, these formulas simplify to ( ) ( )2 2A N B Mx x x x x= + = +  and 

2M Az x x= − .  

16) Calculate in Table 6 columns of pseudo-positions of the array and pseudo-depths. Plot and 

contour a pseudo section for dipole-dipole sounding above by software (Matlab/Octave).  

To illustrate how the resulting pseudo-sections could look like, Figure 3 (next page) shows a simple 

drawing of the numerical values and a color plot from Matlab. When using the first of these formats, 

lab5_worksheet.xls
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you will need to also draw in several contours of apparent resistivity by hand. 

Try recognizing the resistive and conductive elements inserted in the tank. 

 

Hand in: 

Brief answers to the questions highlighted in bold above with figures embedded in a Word or 

PowerPoint document by email. 
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Figure 3. Examples of expected pseudo-section displays (in the first one, you are 

should also draw in contours of constant values of apparent resistivity). 

 

 

Additional material (for information only; no assignments in this section) 

 Observation of resistive and conducting targets by sounding in modeling tank (by Jim 
Merriam, with additional comments by I.M.)  

In general, conductive targets are more easily detected than resistive targets of the same size and at the 

same depth. That is, if you had a conductive target (say 100 times as conductive as the host rock) and a 

resistive target (a 100 times more resistive than the host) of the same dimensions and depth below the surface, 

the conductive target would produce a greater anomaly in apparent resistivity. Figure 4 shows  a gradient 

mode (pole-dipole array) prediction for apparent resistivities in the modelling tank response of a conductive 

target (1000 times more conductive than the water, blue dots) and a resistive target (1000 times more resistive 

than the water; red dots). In both cases, the target is a cylinder of 1.5 cm in diameter and 12 cm long. The top 

of the target is located at 2 cm below the surface.  
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Figure 4. Numerically modeled apparent-resistivity profile obtained by a pole-dipole array in 

the modeling tank. At the center of the tank, a conductive or resistive cylinder (red) is 

placed at in the water (red rectangle). The corresponding apparent resistivities are 

shown by blue dots and red dots, respectively. 

 

A dipole-dipole pseudo section would look different, but the apparent resistivities should be in the same 

range.  

In Figure 4, note that the apparent resistivity in the resistive case is only one percent higher than the 

resistivity of the water. This is despite the 100-times difference in the actual resistivity. In a field situation, we 

often only get repeatability (measurement error) of five percent, and therefore small resistive targets like this 

might not be detectable. In the conductive case (blue dots), the apparent resistivity at the middle of the target 

is almost five times less than the resistivity of the water (yet also not 100 times as the true resistivity of the 

target). 

Note that there are sidelobes of the apparent resistivity at both ends of the cylinder. These increases of 

apparent resistivity are opposite in effect to what you might expect. That is, near its ends but outside of it, the 

conductive cylinder shows apparent resistivities greater than the resistivity of the water (blue dots), and the 

resistive cylinder shows apparent resistivities less than the resistivity of the water (red dots). This counter-

intuitive effect is only seen in 3-D geometry and arises from the secondary charges and current flows near the 

target.  

The pattern of the apparent resistivities at the ends of the target can be understood as follows. First, 

note that the apparent resistivity is calculated from the measured resistance R = V/I, which means that the 

plots in Figure 4 actually represent the gradient of the potential : V x   .  From these plots, the potential 

itself, (x), would look like a positive peak over the left end of the cylinder and a negative peak over its right 

end. These peaks of the electric potential are produced by charges induced on the ends of the conductive or 

resistive cylinder. If the cylinder is conductive, the induced charges are large and such that they nearly 
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compensate the external field, so that is the end of the cylinder located farther away from the source is 

charged positively. If the target is resistive, the induced charges are smaller and may be directed oppositely in 

the 3-D case. 

Figure 5 shows a Schlumberger array response to a 1-m thick layer at 20 m below the surface. In one 

case, the layer is resistive (resistivity is 1000 times the host-rock resistivity, solid line), and in the second case 

the layer is conductive (1000 times less than the host resistivity). The host rock resistivity is 50 Ohmm.  

As you can see, for a boundless layer, the difference between the resistive and conductive cases is not 

so extreme as in Figure 4. The apparent resistivity in the resistive case is about five times the host resistivity, 

and in the conductive case, the apparent resistivity is about 10 times below the host resistivity. Thus, the 

sensitivity of imaging is again higher for conductive targets than for resistive targets. 

Note that in 1-D geometry, the apparent resistivity is always bracketed by the highest and lowest actual 

resistivities. However, the actual resistivity levels are also far from being reached by the apparent resistivity. 

This is because the layer is thin, and significant currents bypass it. In particular, current tends to avoid 

resistive  bodies. 

 

 

Figure 5. Modeled pseudo-section of numerically modeled responses of a conductive (blue 

dots) and resistive (red dots) cylinder (red) placed at the center of the modeling tank 

(red rectangle). 

 

 

 

 


