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GEOL 384.3 and GEOL 334.3 

Lab #8: Electromagnetic Induction 

 

In this lab, you will study the effect of electromagnetic (EM) induction in the way it is used in 

geophysical surveys. In the field, EM induction is measured between the transmitter (often denoted Tx) and 

receiver (denoted Rx) coils. The most common transmitters and receivers in electromagnetics are multi-turn 

coils of wire wound on small loops. A large oscillating current in the transmitter induces electric fields and 

currents everywhere around it. In particular, the induced eclectic field produces voltage in the receiver coil. 

The signal in the Rx coil is a function of the frequency, the current amplitude in the transmitter, the size of the 

coils, the relative separation between Tx and Rx, and their orientations. The direction in which the current 

flows through the coils is also important. This direction is indicated by an arrow on the inside of each coil we 

use in the lab.  

This lab will look at how induction occurs between the transmitter and the receiver coils. First, let us 

consider the transmitter (Tx) itself. 

Coil inductance theory in a nutshell 

From the viewpoint of its EM properties, the Tx coil is characterized by its inductance L and 

resistance R.  With respect to its response to an applied electric voltage at frequency f, the L and R are 

combined in a complex-valued impedance Z R i L= + , where  2 f =   is the so-called angular frequency 

(measured in radians per second). With the use of this frequency, the voltage applied to the coil is written as 

the real part of the complex-valued voltage function V(t):    

( ) ( ) ( )measured cos ReV t V t V t= = , where ( ) i tV t Ve = ,        (1) 

and V is the complex-valued amplitude of the sinusoidal voltage. If we select the time zero (t = 0) at the 

moment at which Vmeasured(t) peaks,  then V becomes a real value (also equal the absolute value V V= ), and 

the time dependence of voltage is a cosine function:  ( ) ( )measured cosV t V t= .  

For the current in the coil, similar relations take place. The observed current is understood as the real 

part of a complex-valued function I(t): 

( ) ( )measured ReI t I t= , where ( ) i tI t Ie = .         (2) 

 Since the time start t = 0 is already selected based on V(t), the amplitude I here is complex-valued and can be 

written as 
iI I e = , where ( )Arg I = is the phase advance of I(t) relative to V(t). If 0  , then it is said 

that the current I(t) lags behind the voltage V(t). 
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Note about in-phase and quadrature components 

The real part of the complex-valued I is called the in-phase component of current amplitude (i.e., the 

part of I(t) in phase, or synchronous with voltage): 
IN-PHASE Re cosI I I = = . The imaginary part of I is 

called the quadrature component, or QUAD for brevity below, and it equals 
QUAD Im sinI I I = = . The 

quadrature component of any signal has at 90 phase advance relative to its in-phase component. 

If the in-phase and quadrature amplitudes are determined, any signal (for example, current I(t)) can be 

presented as a subtraction of cosine and sine functions of t: 

                          ( ) ( ) IN-PHASE QUADcos cos sinI t I t I t I t   = + = − . 

Thus, the first of these terms with time dependence cos(t) has a peak value and zero derivative at t = 0. By 

contrast, the QUAD part (with sin(t)) has a zero value and peak negative derivative at t = 0. 

 

The nonzero phase lag  is due to the inductance of the Tx coil, L. For a given V, the complex-valued 

current amplitude is given by the Ohm’s law: 

V V
I

Z R i L
= =

+
.       (3) 

Therefore, the phase advance of current is the negative of the complex argument of the impedance: 

( )arctan Im ReArgZ Z Z = − = − . From these relations, the amplitude and phase of the current measured in 

a single coil divided by voltage amplitude in it, are  

  

( )
22

1I

V R L
=

+

 ,         and        arctan
L

R


 = −  .    (4) 

Since  is negative, it is said that the current experiences a phase lag relative to the voltage.  

The inductance/resistance system like a coil has a characteristic frequency, which is also called 

“critical” or “relaxation” frequency:  

c

R

L
 =  (in radians/sec), or 

2 2

c
c

R
f

L



 
= =  (in Hz).    (5) 

This frequency provides a natural frequency unit for the coil. Using this frequency, relations (4) can be 

written as functions of f/fc only: 

  1
c

f
Z R i

f

 
= + 

 
,   

( )
2

1

1 c

I

V R f f
=

+

 ,       and        arctan
c

f

f
 = −  .  (6) 

Alternatively, the characteristic frequency can be described by the characteristic time (“relaxation time”): 

1 1 2c c cf  = = . 

From the above relations, note the behaviours of the coil at low and high frequencies: 
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a) At low frequencies 
cf f , 

low-frequency 1I
const

V R
 =  and   0. This is the “resistive” regime 

frequency range. The coil acts like a piece of wire, and the current and voltage are nearly in phase.  

b) At high frequencies 
cf f , the current reduces with frequency as 

high-frequency 1 c
I f

V R f
 , and the 

phase delay approaches ( )high-frequency arctan 2 = −  = − , that is a 90 phase shift of the current 

relative to voltage in the Tx coil. This frequency range above fc is called the “inductive” range. 

 

Graphs of these I/V responses are shown in Figure 1 in terms of the relative frequency f/fc and scaled 

impedance Z/R. 

Now consider the inductance caused by the Tx coil in another Rx coil. If no current is flowing in the Rx 

coil, then the voltage in it is caused by the time derivative of the current in the transmitter coil: 

                
12

Tx Rx
Rx Tx Tx

i L
V i L I V

R i L





−= =

+
,     (8) 

where LTx-Rx is the mutual inductance of the two coils. Thus, the amplitude of the Rx/Tx voltage ratio as a 

function of frequency is 

( )

( )

( )
2 22

2

1

cRx Tx Rx c Tx Rx

Tx
Tx c

f fV L f L

V RR L f f

 



− −= =
+ +

.   (9) 

This function has a “mirror” shape to the one for a single coil, with the plateau located at higher frequencies 

(Figure 1, upper right). The phase response has a similar shape to self-inductance but changing from 90 at 

low frequencies to zero at high frequencies (Figure 1, bottom right). 

For both self-inductance and induction, the critical frequency fc corresponds in the response curves to 

amplitude equal  1 2 0.707  of the asymptotic amplitude at the plateau, or phase  arctan1 45 = − = −   

for self-inductance and 45 =  for Rx inductance (pink arrows in Figure 1). 
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Figure 1. Amplitude and phase of  Tx

Tx

I
V

response for self-inductance of the Tx coil (left) 

and for voltage ratio Rx

Tx

V
V

for a receiver coil (right). Pink lines show how to 

find the critical frequency fc. This frequency separates the resistive and inductive 

frequency ranges. 

 

Measurement procedure 

Current in the Tx coil will be created using a function generator, and measurements conducted using 

the Picoscope (digital oscilloscope) (Figure 2). Connect the current in the transmitter Tx coil to channel A, 

and the measured voltage (in Tx or Rx) to channel B in the instrument. 
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From the screen of an analog oscilloscope or waveform display of the Picoscope (Figure 2), the phases 

can be read as follows. We should measure the time t from a rising (or falling) crossing of channel A signal 

to the nearest rising (or falling, respectively) crossing of the signal in channel B. If the signal in channel A is 

cos(t), then the signal in B is ( )cosconst t t −    . The phase difference in radians is then  = –t, or 

in degrees (deg) = –360ft, where f is the frequency in Hz, and t is in seconds. 

However, instead of these measurements of t we will use the complete shapes of recorded signals. 

During each measurement, the Picoscope outputs a several Matlab (.mat) files containing digitized segments 

of records from its channels A and B. These files are uploaded to a computer using the USB interface and 

processed in a GNU Octave or Matlab program to obtain the amplitude and phase values. This measurement 

is shown in Figure 3. 

If the time zero of the record is selected at the peak of voltage in channel A, then the amplitude VA of 

signal A is obtained directly from the maxima of the cosine function, and the phase of this signal equal zero. 

To determine the amplitude VA and phase B of signal B, this signal can be written as a combination of cosine 

and sine functions of t:  

                              ( ) ( )cos cos sinB B Bu t V t a t b t   = + = + ,    (7) 

where cosB Ba V =  and sinB Bb V = −  are constants. Parameters a and b are found by least-squares fitting of 

the measured uB(t) dependence (red line in the left Figure 2), and from them, 2 2

BV a b= +  and 

( )arctanB b a = −  are obtained. 

 

 

Figure 2. Measurement of coil self-induction. 
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Figure 2. Signal measurements from Picoscope outputs. Left: outputs from channels A 

(blue) and B (red) vs. time. Right: cross-plot from these outputs (Lissajous curve) 

from which the amplitudes and phase are measured (see the header of this panel). 

 

Assignments 

Self-inductance test 

Start with a test of self-inductance of the transmitter using a single square coil (Figure 2).  Connect the 

current to channel A and voltage (not to exceed 2 V) to channel B in the Picoscope.  

1) Measure the voltage and current in the coil as a function of frequencies from 20 Hz to 60 kHz. Place 

results in Table 1 in the worksheet. 

2) In Table 1, fill the column for the absolute value of the 1/impedance, 1 Z I V= .  

3) Plot |I|/V and the phase difference  as a function of frequency. Use log-log scales for |I|/V and 

‘semilogx’ (logarithmic in frequency only) for phase. 

GEOL334 students: also plot the absolute value of phase vs. frequency on log-log scales. You will 

see that in this form, the phase curve will be close to a straight line in the region of fc. 

In the plot, identify the low-frequency and high-frequency regimes described in eqs. (4) and (6) and 

Figure 1 above. Do they show the expected trends with frequency? 

4) Determine the coil resistance R from the plateau of the |I|/V at low frequencies. 

lab8_worksheet.xlsx
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5) Determine the critical frequency fc. Try doing this in two ways (Figure 1, right): 

I) Locate the –45 level on your plot of the phase.  

II) Estimate fc by finding the frequency at which the current amplitude |I|/V drops to 

1 2 0.707  of the “resistive” (plateau) level at low frequencies.  

Compare the two estimates of fc. 

 

6) This question for GEOL334 only: yet another way is to obtain fc from the low-and high-frequency 

limits of the current amplitude (|I/|/V) plots. At low frequencies, the scaled current equals 

low-frequency 1I V R  (case a) above), and at high frequency, the slope with inverse frequency equals 

(case b)): 

( )high-frequency

high-frequencyslope of 
1

c

d I V
I f

R
d

f

= 
 
 
 

.        

Thus, measure the slope of the high-frequency current and divide it by the low-frequency 

current. The ratio should equal the characteristic frequency: 

high-frequency

low-frequency

slope of 
c

I
f

I
 .        

Unfortunately, you may find that the available frequencies are not high enough points in order to 

constrain the high-frequency asymptote.  

 

7) Using the measured fc and resistance of the coil R, determine its self-inductance L from eq. (5): 

2 cL f R= . In SI units, L is measured in Henry (symbol H). 
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Mutual inductance between the transmitter and receiver 

Next, set up the two round coils on the table spaced co-axially, with their axes coincident, and at 

about 1 m apart (Figure 4, left). You do not need to place the foil between the coils shown in Figure 4. 

 

    

 

Figure 4. Transmitter and receiver coils used in the measurements, in vertical (left) and horizontal 

(right) arrangements. 

 

8) Connect the current Tx reading to channel A of the Picoscope and voltage in Rx coil to channel 

B, and perform a similar series of measurements. Adjust he signal strength in the transmitter so 

that the current is large but not so large as to heat up the coil. Vary the frequency in the transmitter 

from 20 Hz to 60 kHz in the function generator and record the signal strength in the transmitting coil 

and in the receiving coil, as well as the phase difference. Place the results in Table 2 in the 

worksheet. 

9) Evaluate the Rx/Tx amplitude ratio, note that Tx voltages are quite constant, and so the change 

from Rx column will be small. 

10) Evaluate the in-phase Rx/Tx and “quadrature” Rx/Tx responses in the columns in Table 2.  

The in-phase and QUAD part are the |Rx/Tx| ratio times cos or sin, respectively, where  is the Rx-

Tx phase difference (make sure to correctly use degrees as argument of the sine function). We will 

further discuss such responses in Lab #9. 

11) Graph the |Rx/Tx| amplitude ratio, in-phase, and QUAD responses on log-log scale and phase vs 

frequency on semilogx scale (on paper or by software).  

Note that no current is flowing in the receiver (open circuit voltage is measured in Rx), and so we are 

actually measuring the inductance of the transmitter and its critical frequency. The voltage in the 

receiver is given by eq. (9) and has the “mirror” shape shown on the right in Figure 1. Verify from 

your log-log plot whether this is so.  

12) From the |Rx/Tx| ratio graph, determine the critical frequency fc (by any method) and mark it on 

each of the above graphs. You may get a slightly different critical frequency compared to the 

previous value. GEOL 334 students:  try explaining the reason for this difference.  

lab8_worksheet.xlsx
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Mark on this figure where the resistive (low-frequency) and inductive (high-frequency) limits are. 

There is a phase shift of exactly −90 between these limits. 

 

Receiver signal vs. coil separation test 

Next, set the coils up on the table so they are co-axial and close but not touching.  

13) Using a high frequency such as 10,000 Hz to get a good response, measure the transmitter and 

receiver signals while moving them apart in 10-cm intervals. Put into Table 3 (RECEIVER 

SIGNAL vs COIL SEPARATION) in the worksheet the Rx voltages normalized to Tx voltages 

equal 10 V (that is, put there values ( ) 10VRx TxV V   which are output by our data acquisition 

program). 

14) Plot the receiver signal amplitude as a function of distance between coil centers. You should find 

that the signal falls off rapidly with distance.  

Once the transmitter receiver separation is larger than a few coil radii, the signal falls off as (a/r)3, 

where a is the coil radius and r the separation. This means that for field work, the transmitter and 

receiver must be fairly close together, unless the transmitter power is high. 

 

Receiver signal vs. height difference between coils  

Set the transmitter coil on the table 1 meter from the receiver location and with its axis horizontal. Set 

the receiver up coplanar with the transmitter, that is, with its axis horizontal. We raised the receiver above the 

plane of the transmitter and recorded how the signal in the receiver changes. This configuration is exactly the 

same as having the transmitter and receiver axes oriented vertically but located at different heights. This 

mutual position of the coils commonly occurs in measurements over significant topography. 

15) Using frequency 10,000 Hz, measure the transmitter and receiver signals while moving the Rx 

coil upward in 10-cm intervals. Put the 10-V normalized voltages in Rx into Table 4 (HEIGHT 

DEPENDENCE) in the worksheet. 

16) In Table 4, fill the columns Slope in radians and Slope in degrees by using the appropriate formula 

from trigonometry. These slopes are simply the geometrical slopes of the line connecting the  Tx and 

Rx centers. 

The magnetic field of the transmitter is symmetric, and so it does not matter whether the receiver is 

above or below the transmitter; only the height difference is important. How much the signal changes with 

height difference also depends on the distance between transmitter and receiver, or the slope of the line 

joining the transmitter and receiver. In the field, we would also like to have the transmitter and receiver at the 

same height. However, if there is some topography, this is impossible, and so we need to do a correction. The 

manufacturer calibrates the instrument so that if the coils are x meter apart and used on a slope of y degrees, a 

known correction is applied to the data.  

17) From Table 4, if the transmitter is uphill or downhill from the receiver on a 10 slope 

(maintaining the same separation) what is the percent change in the response? 

lab8_worksheet.xlsx
lab8_worksheet.xlsx
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Receiver signal vs. coil tilt test 

Finally, set the transmitter with its axis horizontal and the receiver 1 meter away from Tx and coplanar. 

We rotated the receiver slowly about an axis orthogonal to the separation of the transmitter and receiver and 

recorded what happens to the receiver signal. This configuration is exactly the same as having the axes 

vertical and tilting one or the other. In the field, we would try to keep the transmitter and receiver in the same 

orientation, e. g. both with axes vertical, by using a level bubble. 

18) Using frequency 10,000 Hz to, measure the transmitter and receiver signals while tilting the Rx 

coil. Put the 10-V normalized voltages in Rx into Table 5 (TILT WORK SHEET) in the worksheet. 

19) Summarize how does the receiver signal vary with tilt. How large a tilt can you have before the 

response changes by one percent? 

 

Hand in: 

Brief answers to the questions highlighted in bold above with figures embedded in a Word or 

PowerPoint document by email. 

 

lab8_worksheet.xlsx

