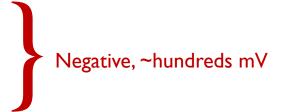
Self-Potential and Induced Polarization - Key points

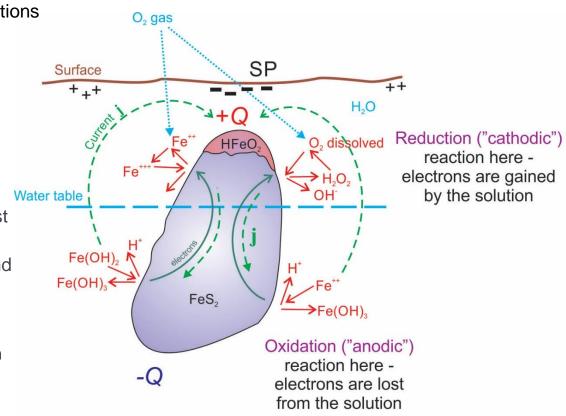
Compared to ground resistivity in the preceding lectures, we will now be looking at polarization properties of the subsurface

- ▶ Self-potentials (SP) produced by natural electric sources
 - Types
 - Origins
 - Measurement
 - Interpretation
 - Examples
- Induced polarization (IP) related (but also quite different) effects produced by controlled sources
 - Origins
 - Measurement
 - Interpretation
 - Examples
- Reading:
 - Reynolds, Chapters 8 and 9
 - ▶ Dentith and Mudge, Sections 5.4 5.5


Self-potential (SP)

- If you go out to the field and measure electric potentials (relative to infinity) occurring naturally, without any obvious source, you will see the variations of the "Self-Potential"
- Characteristic SP values are caused by certain minerals:
 - Sulphide ores (pyrite, chalcopyrite, pyrrhotite, sphalerite, galena)
 - Graphite ore bodies
 - Magnetite and other electronically conducting minerals
 - Coal
 - Manganese
 - Quartz veins, pegmatites

```
Positive, ~ tens mV
```


▶ SP can be due to background (host) rock (these may be of primary interest in hydrogeological investigations)

```
    Fluid streaming, geochemical reactions } Positive/negative, ≤ 100 mV
    Bioelectric (plants, trees) } Negative, ≤ ~ 300 mV
    Groundwater movement } Positive/negative, up to hundreds mV
```


Origin of self-potentials #1 - electrochemical

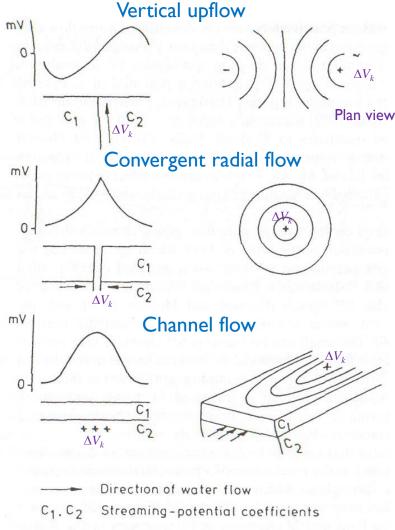
- Groundwater causes various processes leading to self-potentials:
 - Forms an electrolyte (supports flows of free ions and oxidation-reduction reactions)
 - Acts as a solvent for many materials
 - Supports electrochemical reactions
- Oxidation and reduction of Fe reactions occur below and above the water table, respectively
 - These reactions produce upward flow of electrons within the body
 - As a result, current j circulates downward through the interior of the body and upward through host rock
 - These currents cause charges and potentials above and below the body
 - These charges cause the self-potentials measured on the surface or in a borehole

Origin of self-potentials #2 - electrokinetic

- Flows of conductive groundwater themselves involve electrical phenomena
- When viscous fluid flows along a boundary, a difference in the potentials is developed across the <u>boundary layer</u> (between the moving flow and rock)
- This potential is called ζ-potential, electrokinetic, electrofiltration, or streaming potential
- The formula for this potential difference is:

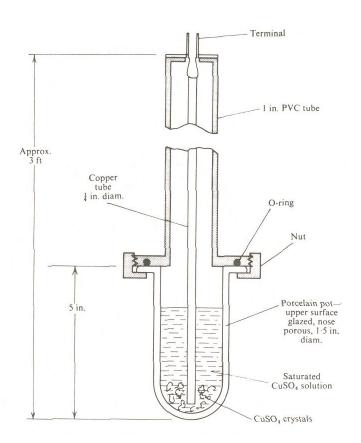
$$\Delta V_k = C_k \frac{\varepsilon \rho}{4\pi \eta} \delta P$$

where:

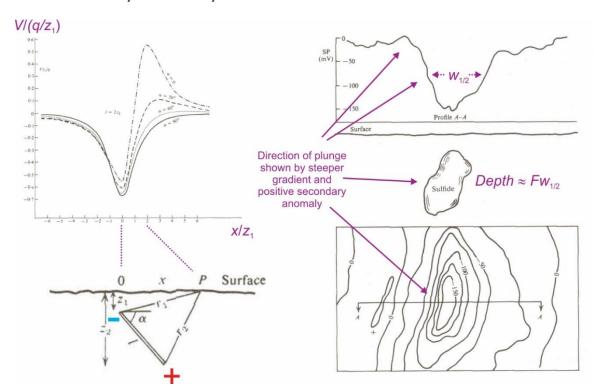

 ε Is the dielectric constant of the fluid;

 ρ – its resistivity;

 η – its viscosity;

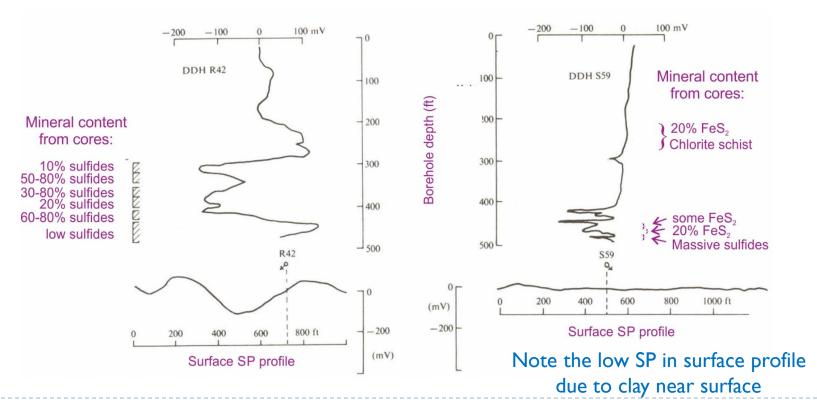

 δP – Bernoulli pressure difference between static and moving fluid (lower pressure in moving fluid);

 C_k – electrofiltration coupling coefficient.

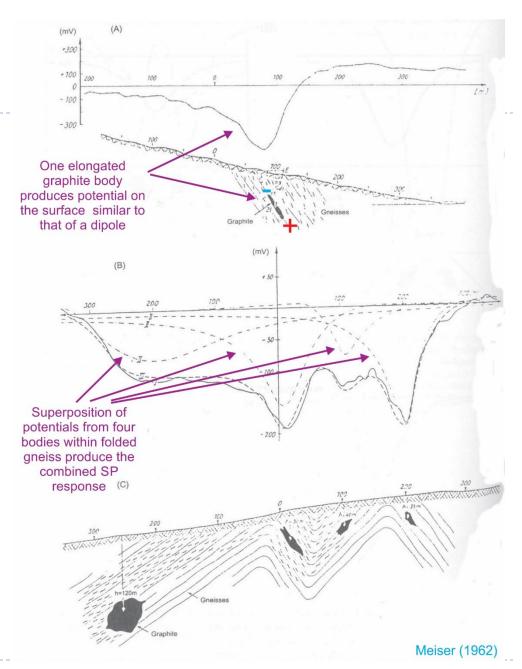

Measurement of self-potentials

- Using 2-electrode pairs (one at infinity)
 - Often combined with IP surveys
- Electrodes should be chemically-neutral and nonpolarizable
 - Metal in a saturated solution of its own salt, such as Cu in CuSO₄
 - Porous bottom of the electrode pot allows the solution to leak through slowly and make contact to the ground
- Need a high-resistance receiver
 - Digital DC meter with input impedance $\sim 10^8 \, \Omega$
- Field procedure:
 - Check electrodes periodically side-by-side for < 2 mV differences
 - Leap-frog electrodes across the strike of the measured anomaly
 - Or use a fixed base station to check the electrodes periodically
- SP measurement stations can be from ~30 m to several km apart

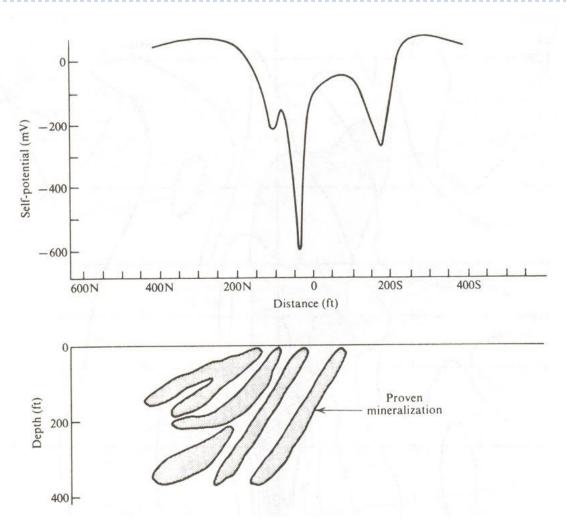
SP interpretation


- Often qualitative, looking for the main structure (details are usually too complex)
- ▶ Source zone is approximated as a dipole (polarized bar (+,-) in plot below)
- **Depth** of the source is estimated from half-magnitude width of the anomaly $(w_{1/2})$
- Orientation, shape, and plunge estimated from the asymmetry of the anomaly
 - Can try methods you used in Lab #3

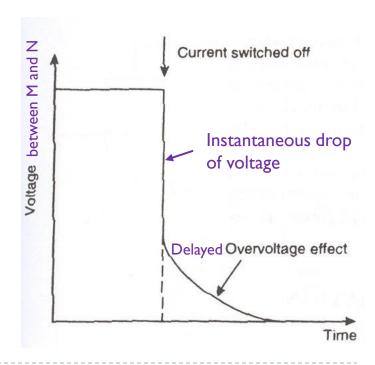
- to gravity (what you saw in Lab #3), the direction of plunge is toward the zone of steep gradients of the field (densely spaced contours) and not toward the broader contours
- This is because the source is a dipole here, with the deeper end of the body having opposite polarity


Effect of overburden on SP

- Clay is conductive and tends to equalize electrical potentials over an area
- Therefore, clay within overburden can reduce the SP response from deeper structures. See the surface profile in the bottom right.
- Similarly, clay greatly complicates the use of GPR (ground-penetrating radar) on tills in Saskatchewan


Example #1

 Four graphite bodies interpreted in folded gneiss (Meiser, 1962)


Example #2

 Very strong negative SP anomalies caused by massive sulphides (Sonnetere area, Quebec; from Telford et al. text

Induced polarization (IP)

- ▶ IP effects are caused by dielectric rather than resistivity or electrochemical/electrokinetic properties of materials discussed before
- ▶ The idea of IP is in using current sources and electrode arrays similar to resistivity but with timevariant currents
 - Time-variant current is injected by electrodes A and B and time-dependent voltages between electrodes M and N are recorded
 - This allows doing sounding and profiling and creating pseudo-sections, as in resistivity work
- After current is switched off (or turned on), the voltage between potential electrodes takes from 1 second to 1 minute to decay (or build up). See plot on the right
 - The dielectric ground acts somewhat like a capacitor causing the time-delayed "relaxation", or "overvoltage" effect

Applications of IP

- Applications of IP basically include all polarizable and not very conductive ore bodies
- Applications are usually compared to resistivity
 - ▶ However, IP effects are sensitive to grain sizes and rock texture
 - Often allow detecting features not noticeable with resistivity
- Typical applications are metallic deposits with low EM (current-related) anomalies and high resistivity
 - Disseminated Cu, Pb-Zn ores, Au;
 - Pyrite, chalcopyrite, magnetite, clay, graphite

IP-related material properties

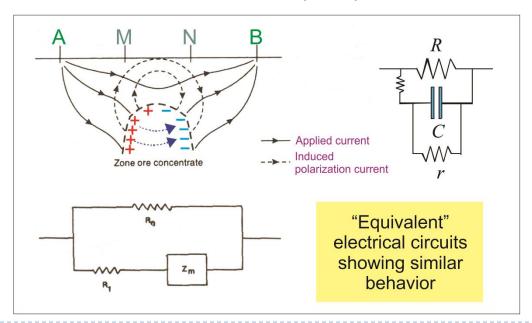
- Material properties measured by IP are related to the ability of the disseminated material to polarize (attain charge on sides of a particle)
- Measured by empirical quantities discussed in next slides

"Metal factor"

Note the unit of conductance:
"mho" = 1/Ohm = Siemens

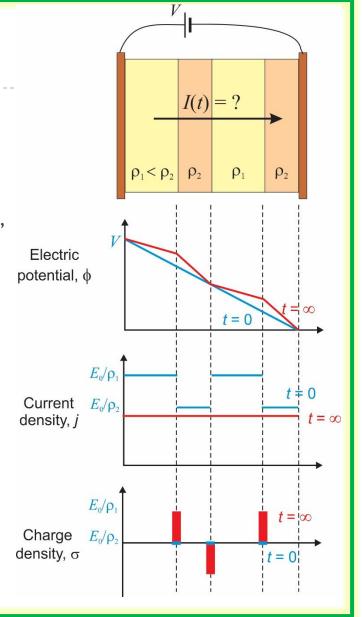
Metal factor (mhos/cm)

"Chargeability"

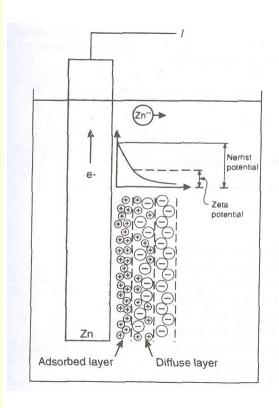

Material	Chargeability (ms)
Ground water	0
Alluvium	1 – 4
Gravels	3 – 9
Precambrian volcanics	8 – 20
Precambrian gneisses	6 – 30
Schists	5 – 20
Sandstones	3 – 12
Argillites	3 – 10
Quartzites	5 – 12

Material

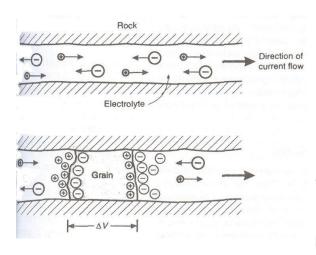
Massive sulfides 10,000 1,000 - 10,000 Fracture-filling sulfides 3-3,000 Massive magnetite 30 - 1,500 Porphyry copper Dissem, sulfides 100 - 1.000Shale-sulfides 3 - 3001 - 300Clays Sandstone - 1 - 2% sulfides 2 - 200Finely dissem. sulfides 10 - 100Tuffs 1 - 100Graphitic sandstone 4-60 and limestone Gravels 0 - 2000 - 200Alluvium Precambrian gneisses 10 - 100Granites, monzonites, diorites 0-60 Various volcanics 0-80 Schists 10-60 Basic rocks (barren) 1-10 Granites (barren) Groundwater

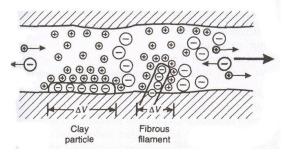

Mechanism of Induced Polarization (IP)

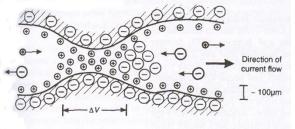
- ▶ IP effects are sensitive to dielectric rather than resistivity or electrochemical/electrokinetic properties of materials we discussed before
- ▶ Disseminated (poorly conductive) ore body is polarized (develops surface charges; + and − in Figure below) by the imposed current
 - When the current is switched off, the charges cause transient current through the conductive overburden (dashed lines).
 - These currents flow in the same direction as the primary current and cause the overvoltage effect



Induced Polarization due to Resistivity Contrasts


- Here is a simple example how overvoltage occurs in a medium with resistivity layering ("faradic", i.e. freely moving charge effect)
 - Immediately after the voltage is applied (time t = 0), electric field E is constant, and currents are greater within layers with smaller resistivity (yellow)
 - This causes accumulation of charges on layer boundaries
 - ▶ Resistance V/I has a certain starting value
 - The accumulating charges cause the *E* and current to reduce with time
 - With reducing current, total resistance V/I gradually increases (overvoltage effect)
 - After sufficient time, the current becomes constant in all layers and resistance V/I reaches maximum (red, $t = \infty$)

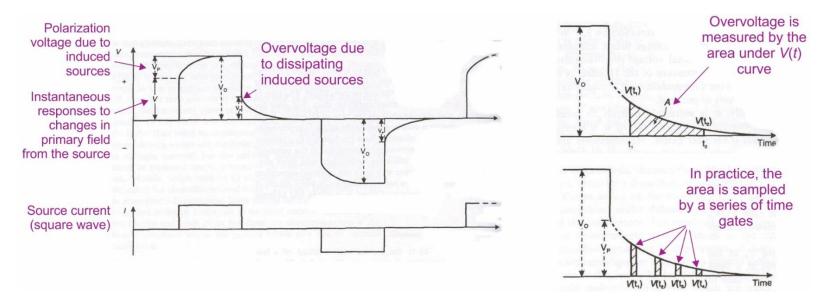

Microscopic mechanisms of Induced Polarization



Electrode polarization by "diffuse boundary layer"

Grain polarization on current flow impediments

Electrolytic partially-permeable membrane polarization

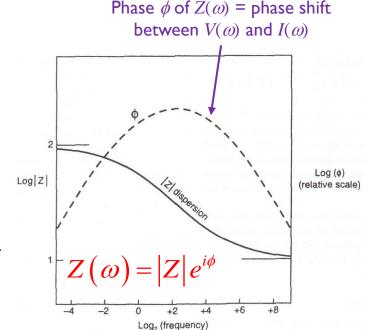

IP measurements

- There are two main types of IP measurements:
 - Time-domain (measuring transient time-dependent signal after switching current on or off)
 - Frequency-domain
 - "Variable-frequency IP" (using apparent resistivities at two frequencies, both < 10 Hz)</p>
 - "Phase-domain IP" (measuring phase delays between source current and voltage)
 - "Spectral IP" (measuring phases and amplitudes at frequencies 10^{-3} to $4\cdot10^3$ Hz)
- All methods use conventional resistivity electrode arrays
 - Most commonly in the double dipole configuration
 - Schlumberger arrays are used for broad reconnaissance surveys
- As with SP, non-polarizable electrodes are usually required

Time-domain IP measurement

- The method mentioned in the preceding slide is called the "time-domain" IP:
 - Current is switched on, off, and reversed for selected intervals in a "square wave" pattern (plot on the left)
 - Each time the current is switched off, "chargeability" M is measured from the series of the induced-voltage V(t) readings (plots on the right)

"Chargeability":
$$M = \frac{\int_{0}^{\infty} V(t) dt}{V_{0}}$$
 [ms] or: $M = \frac{\sum_{\text{gates } i} V(t_{i}) \Delta t_{i}}{V_{0}}$ [ms]


Frequency-domain IP measurement

- Since IP is measured from time variations of the induced voltage, it is also convenient to use harmonic (sine) oscillations rather than square waves
 - This method is called "frequency-domain", "spectral", or "complex-resistivity" IP
- Method:
 - Apply oscillating source current I(t) at frequency f from ~30 to 4000 Hz
 - The measured voltage V(t) will be at the same frequency; evaluate the apparent complex impedance (resistivity, or "impedivity"):

$$Z(\omega) = \frac{V(\omega)}{I(\omega)}k$$

where k is the geometry factor for the electrode array, and $\omega = 2\pi f$.

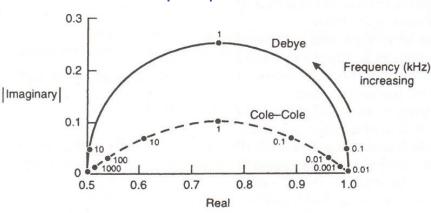
- Look for the "dispersion" of $Z(\omega)$ (difference between low-frequency and high-frequency levels; plot on the right)
 - ▶ This dispersion gives the chargeability *M*
 - This dispersion is also called the "frequency effect" (see next slides)

Cole-Cole model for complex resistivity

- The so-called "Cole-Cole" model is often used to describe systems with relaxation and dispersion
- For complex resistivity as a function of angular frequency $\omega = 2\pi f$, this model is:

$$Z(\omega) = \rho_0 \left[1 - M \left(1 - \frac{1}{\left(1 + i\omega \tau \right)^c} \right) \right]$$

where ρ_0 is the limit at $\omega \to 0$, i.e. ordinary DC resistivity,


M is the chargeability depending on mineral content (the same as in time-domain measurements on preceding slide)

c is the Cole-Cole exponent (0.2 to 0.6) depending on grain sizes and distribution

• With c = 1, the model is called "Debye" (upper curve in the figure)

au is the relaxation time ($10^{\text{-4}}$ to 10^{4} s) depending on resistivity and grain size

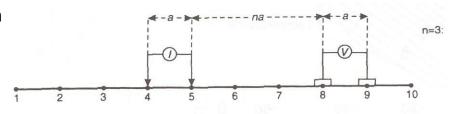
Complex plane of $Z(\omega)$

If you plot $Z(\omega)$ from field data, the spectrum should look something like this. ρ_0 would be judged from $\max\{\text{Re}Z(w)\}=Z(0), \text{ and } M-$ from the magnitude of ImZ

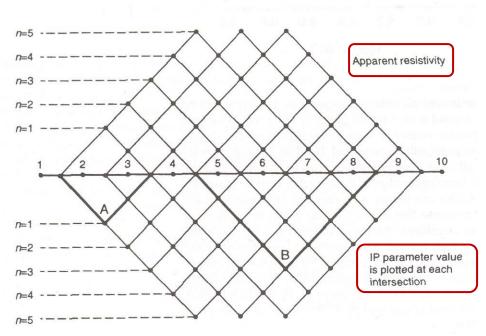
"Variable frequency" IP measurement

As shown in preceding slides, the apparent complex-valued resistivity $\rho_a(f)$ decreases with frequency. The relative decrease of ρ_a between some frequencies f_0 and f_1 is called the "frequency effect":

Frequency Effect =
$$FE = \frac{\rho_a(f_0) - \rho_a(f_1)}{\rho_a(f_1)}$$
 [unitless or %]

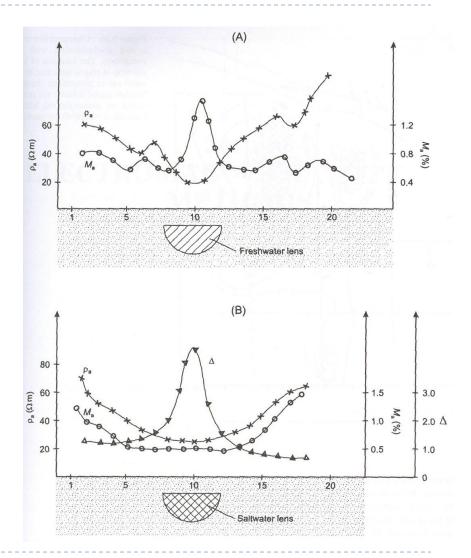

Frequency effect is also expressed as the "Metal factor" (difference in apparent conductivities across the frequency range). The metal factor has units of conductivity:

Metal Factor =
$$\frac{2 \times 10^{5} \pi}{\rho_{a}(f_{0})} FE = 2 \times 10^{5} \pi \left[\sigma_{a}(f_{1}) - \sigma_{a}(f_{0})\right] \left[\frac{\text{Siemens}}{m}\right]$$

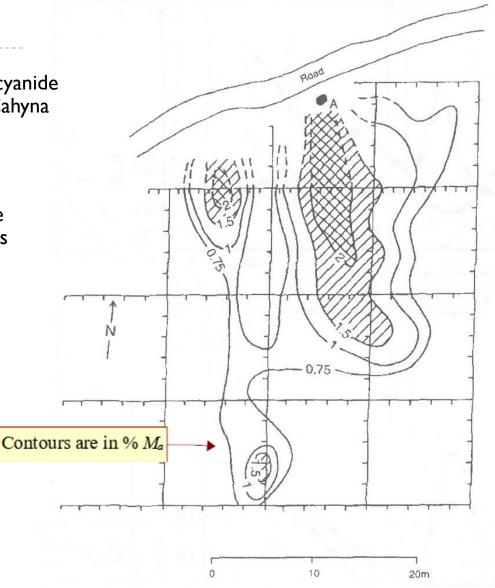

- This measurement only requires two measurements at frequencies much lower (f_0) and much higher (f_1) than all relaxation frequencies in the study area
 - ▶ (However, implementing these end-limit measurements may be tricky if there is some noise in the study area)

Displays of IP data

- IP data are usually displayed similar to static quasi-resistivity $(\rho_a(f_0))$ and interpreted also together with resistivity
- In the form of pseudo-sections or by inversion



Pseudo-sections of apparent resistivity (upper half) and IP chargeability of metal factor (lower half) for a double dipole array


Example #1 – laboratory (Ogilvy and Kuzmina, 1972)

- Freshwater lens in sand is well detected by IP chargeability M_a (peak in plot A)
- For seawater lens, apparent resistivity ρ_a and M_a show only broad anomalies (plot B)
- However, the ratio of overvoltages at periods 0.5 and 5 minutes (denoted Δ) detects the seawater lens well (peak in plot B)
 - So as you see, you may need to be creative when selecting the range of chargeability time gates in order to see the useful response

Example #2 – field

- Identification of a contamination with cyanide complexes (slags from plating works; Cahyna et al., 1990)
 - Resistivity surveys did not detect contamination
 - IP chargeability detected both the known and unknown slag deposits (shaded in the map)

