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Theory of Elasticity

Macroscopic theory

Equations of motion
Wave equations

Energy of a seismic wave

Reading:
➢ Telford et al., Section 4.2
➢ Sheriff and Geldart, Sections 2.1-4
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Stress

Consider the interior of a deformed 
body: At point P, force dF acts on 

any infinitesimal area dS. dF 
is a projection of  stress 
tensor, σ, onto n:

Stress σ
ij
 is measured in [Newton/m2], or Pascal 

(unit of pressure).
dF can be decomposed into two components 
relative to the orientation of the surface, n:

Parallel (normal stress)

Tangential (shear stress, traction)

dFi= ij n j dS

dF ni=ni⋅(projection of F onto n) =nikj nk n j dS

Note 
summation 
over k and jdF= dF­ dF n
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Forces acting 
on a small cube 

Consider a small parallelepiped (dx 
×dy×dz=dV) within the elastic body.

Exercise 1: show that the force applied 
to the parallelepiped from the outside 
is:

(This is simply minus divergence 
(convergence?) of stress!)

Exercise 2: Show that torque applied to 
the cube from the outside is:

F i=­∂ j ij dV

Li=­ijk jk dV
Again, keep in mind
implied summations 

over repeated indices!
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Symmetry of stress 
tensor

Thus, L is proportional to dV: L = O(dV)

The moment of inertia for any of the axes is 
proportional to dV⋅length2:

and so it tends to 0 faster than dV:             
I = o(dV).

Angular acceleration: θ = L/I, must be finite as dV 
→0, and therefore:

Consequently, the stress tensor is symmetric: σij = σji

σji has only 6 independent parameters out of 9.

I x=∫
dV

 y2z2dV

Li /dV=­ijk jk=0.
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Strain

! Strain is a measure of 
deformation, i.e., variation of 
relative displacement as 
associated with a particular 
direction within the body

! It is, therefore, also a tensor
Represented by a matrix

Like stress, it is decomposed into 
normal and shear components

! Seismic waves yield strains of 10-

10-10-6

So we can rely on infinitesimal 
strain theory 
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Elementary Strain

When a body is deformed, 
displacements (U) of its points are 
dependent on (x,y,z), and consist of:

Translation (blue arrows below)

Deformation (red arrows) 

Elementary strain is:  eij=
∂U i

∂ x j
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Stretching and 
Rotation

Exercise 1: Derive the elementary 
strain associated with unidirectional 
stretching of the body along the X 
axis:

x '
y '=1 0

0 1x
y.

Exercise 2: Derive the elementary 
strain associated with rotation by a 
small angle α:  

x '
y '= cos sin 

­sin  cosx
y.
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Strain Components

Anti-symmetric combinations of  eij yield 
rotations of the body without changing 
its shape:

e.g.,                    yields rotation about the 
'y' axis.

So, the case of                 is called pure 
shear (no rotation).

To characterize deformation, only the 
symmetric component of the elementary 
strain is used:

1
2

∂U z

∂ x
­
∂U x

∂ z


∂U z

∂ x
=
∂U x

∂ z
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Dilatational Strain 
(relative volume change during 
deformation)

Original volume: V=δxδyδz
Deformed volume: V+δV=(1+εxx)

(1+εyy)(1+εzz)δxδyδz

Dilatational strain:

Note that shearing strain does not 
change the volume.

=
V
V

=1xx 1yy 1zz≈xxyyzz

=ii=∂i U i=
∇ U=div U
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Hooke's Law
(general)

Hookes' law describes the stress 
developed in a deformed body:

F = -kx for an ordinary spring (1-D)

σ ~ ε (in some sense) for a 'linear', 'elastic' 3-D 
solid. This is what these terms mean:

For a general (anisotropic) medium, 
there are 36 coefficients of 
proportionality between six independent 
σij and six εij:

 ij=ij , klkl .
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Hooke's Law
(isotropic medium)

For  isotropic medium, the strain/stress 
relation is described by just 2 constants:

σij = λ∆δ
ij
 + 2µεij 

δ
ij 
is the “Kronecker symbol” (unit 

tensor) equal 1 for i=j and 0 
otherwise;

λ  and µ are called the Lamé constants.

Although λ  and µ� provide a natural 
mathematical parametrization for σ(ε), 
they are always intermixed in 
experimental environments.

Their combinations, called “elastic 
modulae” are typically directly 
measured.

Question: what are the units for λ  and µ?
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Four Elastic Modulae

Depending on boundary conditions (i.e., 
experimental setup), different combinations of 
λ '  and µ  may be convenient. These 
combinations are called elastic constants, or 
modulae:

Young's modulus and Poisson's ratio:
� Consider a cylindrical sample uniformly 

squeezed along axis X:

Note: The Poisson's ratio is more often denoted σ

It measures the ratio ofλ and µ: 

= 1

2
­1
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Four Elastic Modulae

Bulk modulus, K
� Consider a cube subjected to hydrostatic 

pressure 

The constant µ complements K in 
describing the shear rigidity of the 
medium. Thus, µ is also called the 
'rigidity modulus'

For rocks:
� Generally, 10 Gpa < µ < K < E < 200 Gpa
�  0 < ν < ½ always; for rocks, 0.05 < ν < 0.45, 

for most, ν is near 0.25.

For liquids,  ν= ½ and µ=0 (no shear resistance)
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Equations of Motion
(Motion of the elastic body with time)

Uncompensated net force will result in 
acceleration (Newton's law): 

Therefore, the 
equations of 
motion for the 
components of U: 


∂2 U i

∂ t2
=

∂ix

∂ x

∂ iy

∂ y

∂ iz

∂ z


V
∂2 U i

∂ t2
=F i

Newton's law:


∂2 U i

∂ t2
=

∂
∂ xi

∇ 2 U i
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Wave potentials
Compressional and Shear waves

These equations describe two types of waves.

The general solution has the form (“Lame 
theorem”):

Exercise: substitute the above into the 
equation of motion:

and show:

U= ∇ ∇× . U i=∂iijk∂ jk(or                             )


∂2 U i

∂ t2
=

∂
∂ xi

∇2 U i


∂2

∂ t2
=2∇ 2 ,


∂2i

∂ t2
=∇ 2i ,

∇⋅=0. Because there are 4 components 
in ψ and φ only 3 in U, we need to constrain ψ.

P-wave (scalar) potential.

S-wave (vector) potential.
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Wave velocities
Compressional and Shear waves

These are wave equations; compare to the 
general form of  equation describing wave 
processes:

Compressional (P) wave velocity:

Shear (S) wave velocity: 

VS < VP, 

for σ=0.25:

Note that the V
P
/V

S
 depends on the Poisson 

ratio alone:

V P /V P=3

V P

V S

= 
2

= 1/2­
1­

.
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Notes on the use 
of potentials

Wave potentials are very useful for 
solving elastic wave problems
Just take φ or ψ satisfying the wave equation, 
e.g.:

...and use the equations for potentials to derive 
the displacements:

...and stress from Hooke's law:    

σij = λ∆δ
ij
 + 2µεij 

Displacement amplitude = 
ω×(potential amplitude)/V

Power = ½ρ[ω2×(potential amplitude)/V]2

U= ∇ ∇×.

r , t =Ae
it­r n

V P



. (plane wave)

This is velocity amplitude 
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Example:

Compressional (P) wave

Scalar potential for plane harmonic wave:

Displacement:

note that the displacement is always along n.

Strain:

Dilatational strain:

Stress: 

Question: what wavefield would we have if used   
cos() or sin() function instead of complex exp() in 
the expression for potential above?   

r , t =Ae
it­r n

V P



.

ui r , t =∂ir , t =
­ini

V P

Ae
it­r n

V P



.

ijr , t =∂i u j r , t =
2 ni n j

V P
2

A e
it­r n

V P



.

=iir , t =
2

V P
2

A e
it­r n

V P



=
2

V P
2
r , t  .

 ijr , t =
2

V P
2
ij2 ni n jr , t .
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Impedance

Impedance, Z, is a measure of the 
amount of resistance to particle motion.

In elasticity, impedance is a ratio of 
stress to particle velocity.

Thus, for a given applied stress, 
particle velocity is inversely 
proportional to impedance.

For P wave, in the direction of its 
propagation:

➔ impedance does not depend on 
frequency but depends on the 
wave type and incidence direction.

Z r , t =
nnr , t 
úunr , t 

=
2

V P

=V P.
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Elastic Energy Density

Mechanical work is required to deform 
an elastic body; as a result, elastic 
energy is accumulated in the 
strain/stress field

When released, this energy gives rise to 
earthquakes and seismic waves

For a loaded spring (1-D elastic body),   
E= ½kx2=½Fx

Similarly, for a deformed elastic 
medium, energy density is:

E=1
2
 ijij
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Elastic Energy Density
in a plane wave

For a plane wave:

...and therefore:

For P- and S-waves, this gives:

Thus, in a wave, strain energy equals 
the kinetic energy

Energy propagates at the same speed 
as the wave pulse 

ui=ui t­p⋅x 

ij=
1
2
∂i u j∂ j ui=­1

2
 úui p j úu j pi .

1
2
ijij=

1
2
[p⋅u2u⋅up⋅p]

1
2
ijij=

1
2
2 p2u2=1

2
 úu2 P-wave

1
2
ijij=

1
2
 p2u2=1

2
 úu2 S-wave

Energy is NOT conserved locally!
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Wave Polarization
 Elastic solid supports two types of 
body waves:

Note that this is still an ISOTROPIC reflector.
In general, reflection will intermix 

the S-wave polarization modes,
and P-wave will convert into SV upon reflection. 

P

S


