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GEOL483.3

Theory of Elasticity

Macroscopic theory
Equations of motion
Wave equations

Energy of a seismic wave

* Reading:
> Telford et al., Section 4.2
> Sheriff and Geldart, Sections 2.1-4
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Stress

@ Consider the interior of a deformed

body: At point P, force dF actson
Normal ! any infinitesmal area dS. dF
stress A isa projection of stress

tensor, g, onto n:

| dFi:Uijnde
Shear
stress

s Stress g, is measured in [Newton/n¥], or Pascal
(unit of pressure).

@ dF can be decomposed into two components
rel ative to the orientation of the surface, n:

+ Parallel (normal stress)

(dF_).=n.-(projection of F onto n) =dS

+ Tangential (shear stress, traction) Note
— summetion

dF ,=dF —dF_ over k e
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Forces acting
on a small cube

@ Consider a small parallelepiped (dx
xdyxdz=dV) within the elastic body.

® Exercise 1: show that the force applied
to the parallelepiped from the outside

IS
F.=—0,0,dV

(This is simply minus divergence
(convergence?) of stress!)

® Exercise 2: Show that torque applied to

the cube from the outside is:
Again, keep in mind

L. =—e. o. dV <€ implied summetions
| ijk ™ Jk over repeated indices!




GEOL483.3

Symmetry of stress
tensor

Thus, L is proportional to dV: L = O(dV)

The moment of inertia for any of the axes is
proportional to dVIkength*

2 2
Ixzf (y+2)pdV
dv
and so it tends to O faster than dV:
| = o(dV).

Angular acceleration: 8= L/l, must be finite asdV
- 0, and therefore:

Li/dV=—eiijjk=O.

Consequently, the stress tensor Is symmetric: g, = g,

o hasonly 6 independent parameters out of 9.

2 zy zz n X

. =0 h K\ Normal stress
Shear stress components
G, =0, components

G,=0, ‘ are symmetric
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Strain

® Strain is a measure of
deformation, I.e., variation of
relative displacement as
associated with a particular
direction within the body

B |t is, therefore, also a tensor
* Represented by a matrix

* Like stress, it is decomposed into
normal and shear components

B Seismic waves yield strains of 10
10_10—6

@ So we can rely on infinitesimal
strain theory
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Elementary Strain

* When a body is deformed,
displacements (U) of its points are
dependent on (X,y,z), and consist of:

* Translation (blue arrows below)

* Deformation (red arrows)

* Elementary strain is: eij:@—)(i

%
= GUdZZ(éUx 42 U dZ]

oz oz oz
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Stretching and
Rotation

@ Exercise 1: Derive the elementary
strain associated with unidirectional
stretching of the body along the X

axis:
X"|_[1+y 0 |[X
y' 0 1+y/\y/)
* Exercise 2: Derive the elementary

strain associated with rotation by a
small angle a.

X'|_[ cosx N o |[ X
y'] \—dna cosx/\y/
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Strain Components

Anti-symmetric combinations of e, yield
rotations of the body without changlng

Iits
”

shape:

1. 0U
e.dg., E( o x
'y' axis.

ou,

z

6U_

So, the case of
shear (no rotatlong

To
symmetric component

aZX Is called pure

characterize deformation, only the

strain Is used: { {
€ =

€y =

oU, 1{oU, oU,
: oYy My
ox 2 oy  ox

oy 2

oU, oU., 1{oU. oU,
L oY, 1 : 7
oz 2\ oy oz

of the elementary
OU

oU,

ouU, 1 [au}‘ N

8x

/
s
i

—aﬁ,where i,]=x,y,0rz
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Dilatational Strain
(relative volume change during
deformation)

* Original volume: V=0xdydz
» Deformed volume: V+dN=(1+¢, )
(1+6,)(1+e,) oy &

e Dilatational strain:

oV
A=—=(1+¢c_)(1+¢c )(1l+c )~e_+e&_ +e¢
V X y 2z XX Wy 7z

A=g.=0U =V U=dvU

* Note that shearing strain does not
change the volume.
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Hooke's Law
(general)

@ Hookes' law describes the stress
developed in a deformed body:

F = -kx for an ordinary spring (1-D)

o — £(insome sense) for a'linear’, 'elastic' 3-D
solid. Thisiswhat these terms mean:

Linear, Elastic (reversible) Nonlinear, Inelastic

® For a general (anisotropic) medium,
there are 36 coefficients of
proportionality between six independent
g, and six &;:
(T”:A

ij k€t
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Hooke's Law
(isotropic medium)

@

For isotropic medium, the strain/stress
relation is described by just 2 constants:

il ik it

¥ 5” Is the “Kronecker symbol” (unit

tensor) equal 1 fori=jand O
otherwise;

* A and pare called the Lamé constants.

Although A and g provide a natural
mathematical parametrization for o(¢),
they are always intermixed in
experimental environments.

+ Their combinations, called “elastic
modulae” are typically directly
measured.

Question: what are the units for A and //?
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Four Elastic Modulae

Depending on boundary conditions (i.e.,

experimental setup), different combinations of
A' and ¢4 may be convenient. These
combinations are called elastic constants, or

modulae:

* Young's modulus and Poisson's ratio:

Consider a cylindrical sample uniformly
squeezed along axis X:

Ay

All other

[

G, =AA+2pe
G, =AA+2ue =0,

Y LAY
c.=MNA+2ue_=0=¢,=¢,= L
2p
o 21 GA+2
Young's modulus: E=—== M(, 1)
E Al
x Poisson's ratio: vV =- o)
> Lo

@ |t measures the ratio ofA and p: [%:

Note: The Poisson's ratio is more often denoted ¢

i_l)
20
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Four Elastic Modulae

|‘|.-

Bulk modulus, K

Consider a cube subjected to hydrostatic

pressure
Zﬂ
Gxx :ny :Gzz :_p7
P “3p=30"A+2uA
p | e P
}T > =
Y : A ——

*+ The constant y/complements K in
describing the shear rigidity of the
medium. Thus, uis also called the
'rigidity modulus'

* For rocks:

Generally, 10 Gpa< ¢ < K < E < 200 Gpa

O0< v<Y2always; for rocks, 0.05< v<0.45,
for most, vis near 0.25.

* For liquids, v=%and 4=0 (no shear resistance)
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Equations of Motion

(Motion of the elastic body with time)

@ Therefore, the
equations of
motion for the
components of U:

Uncompensated net force will result in
acceleration (Newton's law):

2
Newton's law: pSV 0 Uzi =F.
ot
o°U. do, oo, oo,
p— = +——t—)
oy 0z

!
, OA o(eU,  oU, aU. o, oU, U,
+ Y — ke p Ll oy L
0 ox”* oy oz

.
= (ww)%é— +uVaU.
X
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Wave potentials

Compressional and Shear waves

® These equations describe two types of waves.

@ The general solution has the form (“Lame
theorem”):

e
U=V¢+Vxg. (Or U=0¢+e, 0y, )
= - ‘ Because there are 4 conmponents
V'L[/=O. in ¢ and gonly 3 in U, we need to constrain ¢.

@ Exercise: substitute the above into the
equation of motion:
o°U. oA
I 2
=(A+u)—+uVU
o (A+p) i N

p

and show:

- ) )\

p —(A-I—Zu)VZCI) , € P-wave (scaar) potentia.

o2 I
oy, ., _
p—=H V g, * S-wave (vector) potentia.

ot '
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Wave velocities

Compressional and Shear waves

® These are wave equations; compare to the
general form of equation describing wave
processes:

@ Shear (S) wave velocity:
* V. <V,

> =0.25: 1k
for 0=0.25: VP/VP_\/§
» Note that the V /V_ depends on the Poisson

U \/1/2—0

A E TS|

P

ratio alone: vV \/
V

S
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Notes on the use
of potentials

@ Wave potentials are very useful for
solving elastic wave problems

Just take gor ¢ satisfying the wave equation,

e.g.: | 1L

¢ (T ,t)=Ae " (plane wave)

...and use the equations for potentials to derive
the displacements:

U=V¢+Vxij.

...and stress from Hooke's law:
g, = Ao, + 2ueg,
e Displacement amplitude =

wXpotential amplitude)/V
» Power = Y50 af x(potential amplitude)/V]*

KThisisveIocity amplitude
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Example:

Compressional (P) wave

@ Scalar potential for plane harmonic wave:

iw(t—E)

o (F,t)=Ae V.

@ Displacement:

u(r,t)=0.¢(7 ,t)=——~Ae .

note that the displacement is always along n.

@ Strain:

| | w’nn. e
e (T,t)=0.u (T, t)=—->-"Ae il
j i 2
VP
@ Dilatational strain:
002 iw(»[_m) 002
A=£”(?,t)=—2Ae Ve =—2(l)(?,t)
V
P P
@ Stress:
wz
aij(F,t):—(Aéij+2uninj)c/)(F,t).

V2

P

+ Question: what wavefield would we have if used
cos() or sin() function instead of complex exp() in
the expression for potential above?
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Impedance

5

Impedance, Z, is a measure of the
amount of resistance to particle motion.

* In elasticity, impedance is a ratio of
stress to particle velocity.

* Thus, for a given applied stress,
particle velocity is inversely
proportional to impedance.

* For P wave, in the direction of its
propagation:

u

> iImpedance does not depend on

frequency but depends on the
wave type and incidence direction.
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Elastic Energy Density

® Mechanical work is required to deform
an elastic body; as a result, elastic
energy is accumulated in the
strain/stress field

* When released, this energy gives rise to
earthguakes and seismic waves

® For a loaded spring (1-D elastic body),
E= 15kx?=Ll4%FXx

* Similarly, for a deformed elastic
medium, energy density Is:

Ezlg..e._
2 i
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Elastic Energy Density
In a plane wave

For a plane wave:
u=u (t—"p-x)

1 1, . :
<':-”.:§((’9iuJ.Jrajui)=—§(ui p,+u,p).
...and therefore:
1 1 - —>\2 - >\ /> =
Egijgij:§[<2\+“)(p°u) +[J(U'U)(p' p)]
For P- and S-waves, this gives:
1 11} 2.2 1 9 )
Eaijgij_§<2\+2u) P U =-pU P-wave
%Uije”:%(u) p2U2=%pﬁ2 S-wave

Thus, In a wave, strain energy equals

the kinetic energy Energy is NOT conserved locally!

Energy propagates at the same speed
as the wave pulse
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Wave Polarization

@ Elastic solid supports two types of

body waves:
innni
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Note that thisis still an ISOTROPIC reflector.
In general, reflection will intermix
the S-wave pol arizati on modes,
and P-wave will convert into SV upon reflection.




