Geometrical Seismics *Refraction*

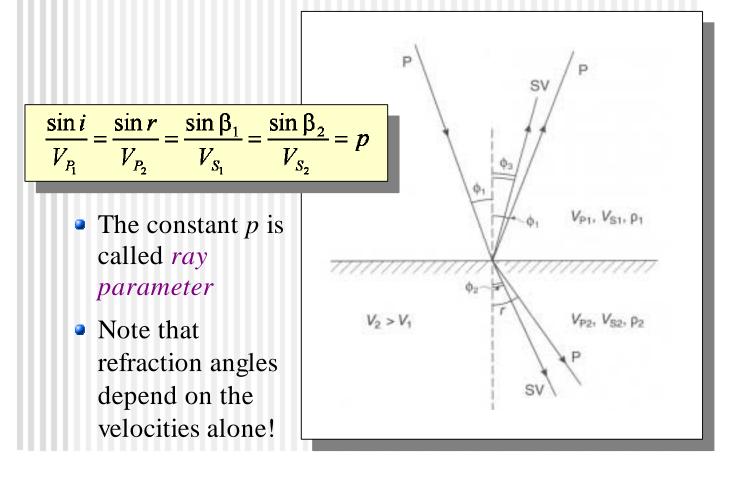
- Refraction paths
 - Head waves
 - Diving waves
- Effects of vertical velocity gradient

Reading:

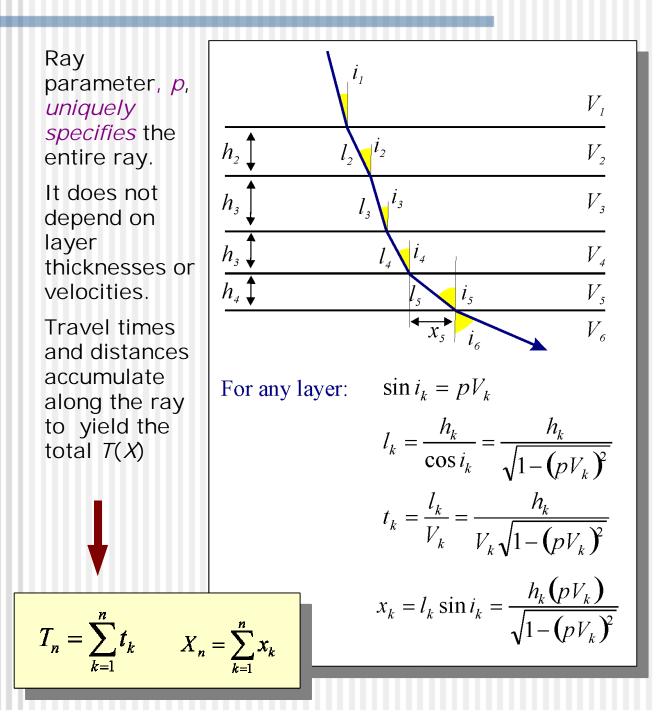
Sheriff and Geldart, Chapter 4.2 - 4.3.

Snell's Law of Refraction

- When waves (rays) penetrate a medium with different velocity, they *refract*, i.e. bend toward or away from the normal to the velocity boundary.
- The Snell's Law of refraction relates the angles of incidence and emergence of waves refracted on a velocity contrast:



Refraction in a stack of horizontal layers



Critical Angle of Refraction

- Consider a faster medium overlain with a lowervelocity layer (this is a typical case).
- Critical angle of incidence in the slower layer is such that the refracted waves (rays) travel horizontally in the faster layer (sin r = 1)
- The critical angles thus are:

$$i_{C} = \sin^{-1} \frac{V_{P_{1}}}{V_{P_{2}}} \qquad \text{for P-waves,}$$
$$i_{C} = \sin^{-1} \frac{V_{S_{1}}}{V_{S_{2}}} \qquad \text{for S-waves.}$$

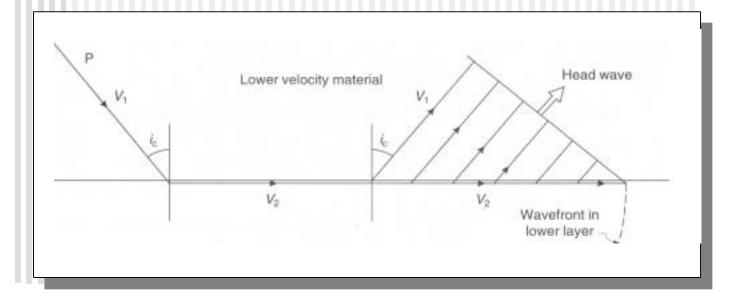
- Critical ray parameter: $p^{critical} = \frac{1}{V_{refractor}}$
- If the incident wave strikes the interface at an angle exceeding the critical angle, no refracted or head wave is generated.
- Note that i_c should better be viewed as a property of the interface, not of a particular ray.

Head wave

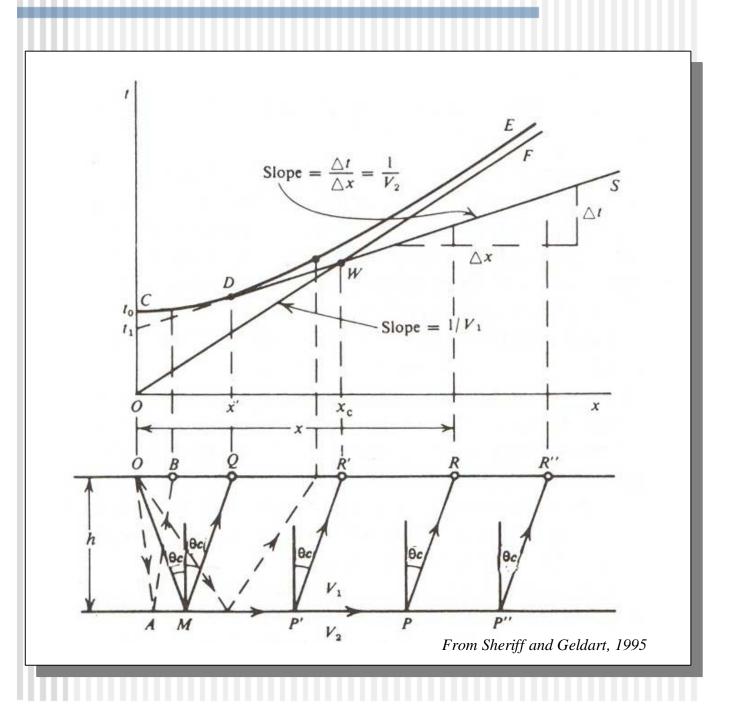
- At critical incidence in the upper medium, a head wave is generated in the lower one.
- Although head waves carry very little energy, they are useful approximation for interpreting seismic wave propagation in the presence of strong velocity contrasts.
- Head waves are characterized by planar wavefronts inclined at the critical angle in respect to the velocity boundary. Their travel-time curves are straight lines:

$$t = t_0 + \frac{x}{V_{and}}$$

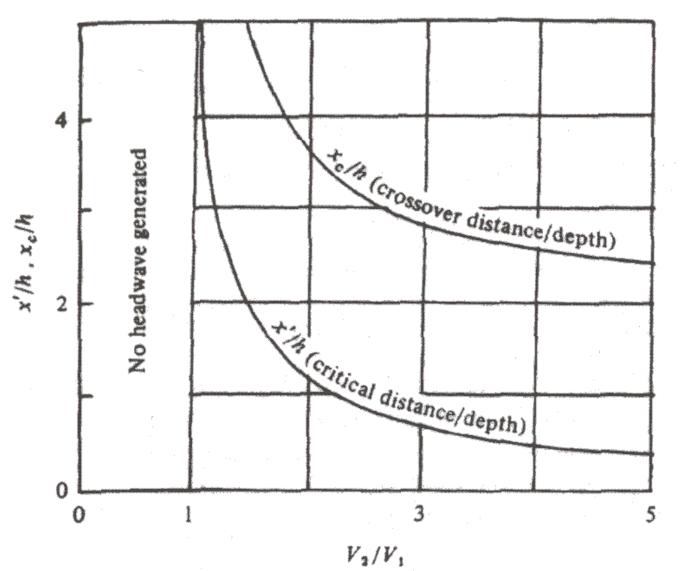
Here, t_o is the *intercept time*, and V_{app} is the *apparent velocity*.



Relation between Reflection and Refraction travel-times



Critical and Cross-over distances vs. Velocity contrast



Note that the distances are *proportional* to the depth and *decrease* with increasing velocity contrast across the interface

Travel times (Horizontal refractor)

Direct wave:

$$t(x) = \frac{1}{V_1}.$$

Head wave:

$$p = \frac{1}{V_2}$$

$$\sin i = pV_1 \qquad \cos i = \sqrt{1 - (pV_1)^2}$$

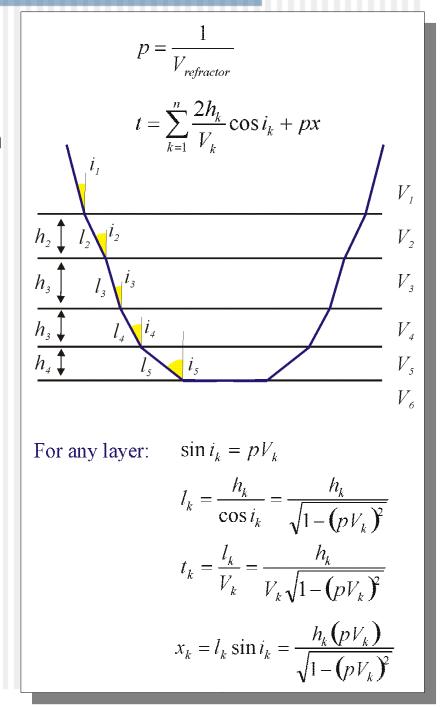
$$t = 2\frac{h_1}{V_1 \cos i} + p(x - 2h_1 \tan i) = \frac{2h_1}{V_1 \cos i} (1 - pV_1 \sin i) + px = \frac{2h_1}{V_1} \cos i + px$$

$$t_0 = \frac{2h_1}{V_1} \cos i = \frac{2h_1}{V_1} \sqrt{1 - (pV_1)^2} \qquad \text{intercept time, } t_0$$

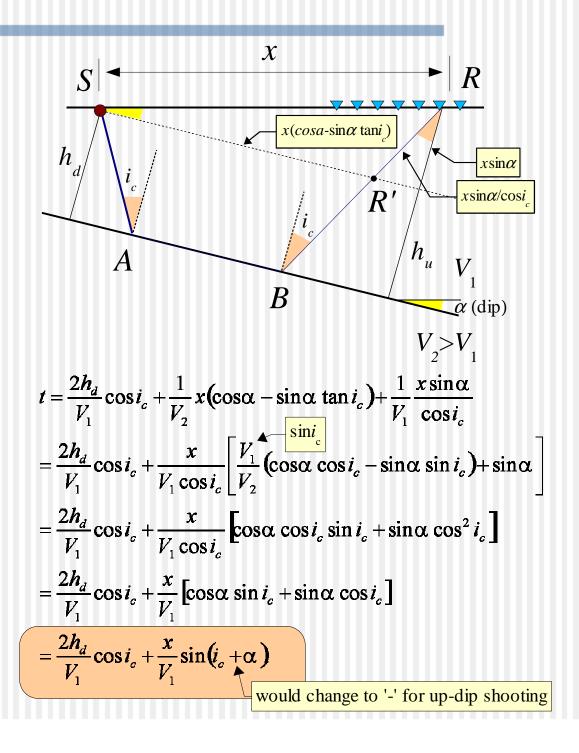
Travel times (Multiple horizontal layers)

p is the same critical ray parameter for the bottom (refracting) interface;
 *t*₀ is accumulating

across the layers:

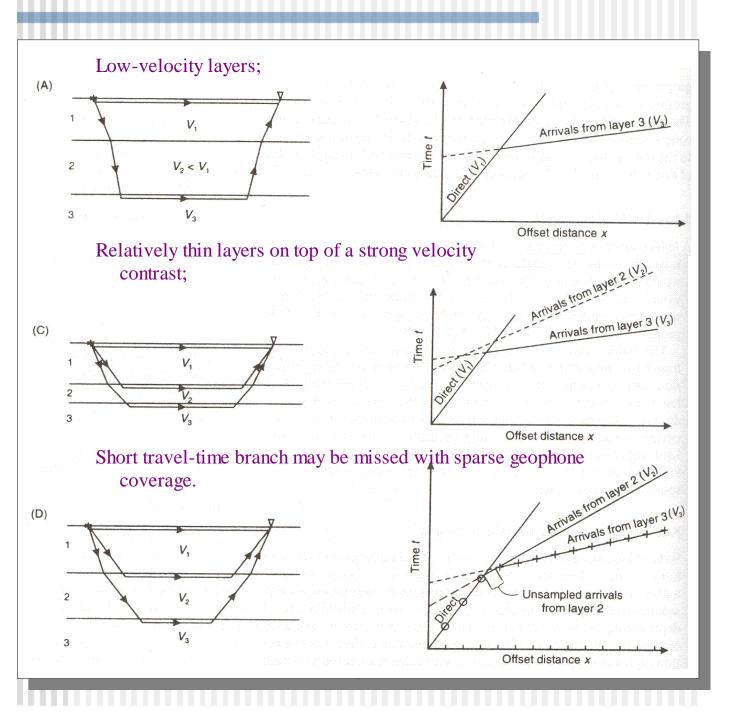


Travel times (Dipping refractor)



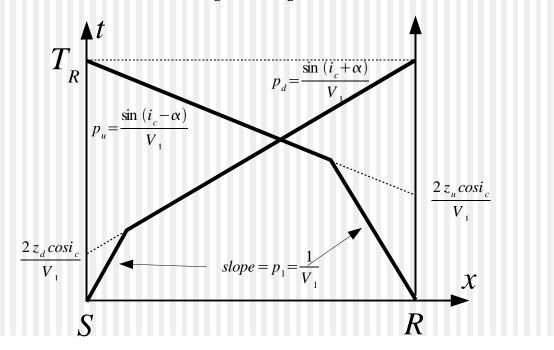
Hidden-Layer Problem

 Velocity contrasts may not manifest themselves in refraction (first-arrival) travel times. Three typical cases:



Reversed travel times

- One needs *reversed* recording (in opposite directions) for resolution of dips.
- The *reciprocal times*, $T_{R'}$ must be the the same for reversed shots.
- Dipping refractor is indicated by:
 - Different apparent velocities (=1/p, TTC slopes) in the two directions;
 - > determine V_2 and α (refractor velocity and dip).
 - Different intercept times.
 - > determine h_d and h_u (interface depths).



Determination of refractor velocity and dip

- Apparent velocity is V_{app} = 1/p, where p is the ray parameter (i.e., slope of the travel-time curve).
 - Apparent velocities are measured directly from the observed TTCs;
 - V_{app} = V_{refractor} only in the case of a horizontal layering.

For a dipping refractor:

- > Down dip: $V_d = \frac{V_1}{\sin(i_r + \alpha)}$ (slower than V_1); > Up-dip: $V_u = \frac{V_1}{\sin(i_r - \alpha)}$ (faster).
- From the two reversed apparent velocities, i_{α} and α are determined:

From i_c, the refractor velocity is:

$$V_2 = \frac{V_1}{\sin i_c}.$$

Approximation of small refractor dip

If refractor dip is small:

$$\frac{V_1}{V_d} = \sin (i_c + \alpha) \approx \sin i_c + \alpha \cos i_c,$$

$$\frac{V_1}{V_u} = \sin (i_c - \alpha) \approx \sin i_c - \alpha \cos i_c,$$

and therefore:

$$\sin i_c \approx \frac{V_1}{2} \left(\frac{1}{V_d} + \frac{1}{V_u} \right)$$

and:

$$\frac{1}{V_2} \approx \frac{1}{2} \left(\frac{1}{V_d} + \frac{1}{V_u} \right).$$

Thus, the slowness of the refractor is approximately the mean of the up-dip and down-dip apparent slownesses.

Diving waves

- Consider velocity gradually increasing with depth: V(z).
- Rays will bend upward at any point and eventually will return to the surface

Such waves are called *diving waves*.

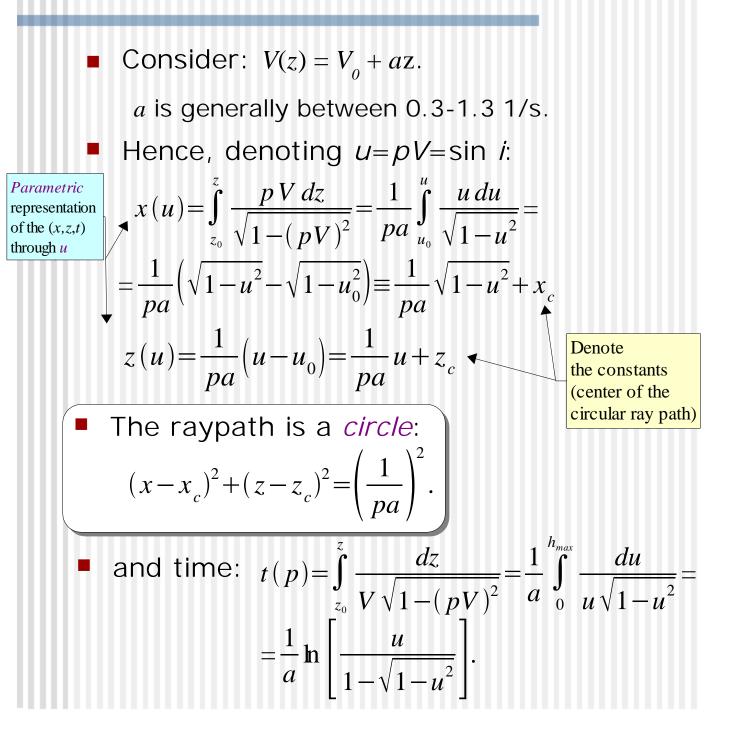
An *implicit* solution for the travel-time curve (x, t) can be obtained from the multiple-layer refraction formulas:

$$x(p) = 2 \int_{0}^{h_{max}} \frac{pV(z)dz}{\sqrt{1 - (pV(z))^{2}}},$$

$$t(p) = 2 \int_{0}^{h_{max}} \frac{dz}{V(z)\sqrt{1 - (pV(z))^{2}}},$$

where h_m is the depth at which $pV(h_m) = 1$.

Diving waves Linear increase of velocity with depth



Diving waves

Layers with low velocities and high velocity gradients create complex travel-time curves

