Reflection seismic Method - 3D

- 3-D acquisition
- Land
- Marine
- 3-D data processing and display

Reading:

Sheriff and Geldart, Chapter 12

Land 3-D acquisition

- Key considerations:
 - Cost minimize the number of source points
 - Offset-azimuth uniformity
 - Uniformity and fidelity
 - Reduction of the acquisition footprint.
- For comparable data quality, 3-D work usually requires about ½ of the fold necessary in 2-D

Loop (sources and geophones around the perimeter)

Acquisition fringe

In order to ensure uniform coverage of the target area after migration, data must be acquired across a broader area:

Marine 3-D acquisition

- Marine 3-D data are generally acquired using a boat towing a hydrophone array (streamer) and an array of air guns.
- The boat traverses the area back and forth:
- Shot/receiver lines are oriented parallel to the structural dip direction (why?).

Marine 3-D acquisition

- To save on the ship costs, several (up to 6) parallel streamers can be towed by one ship.
- Or, two source arrays firing alternately could create two lines of midpoints in one pass:

Marine 3-D acquisition

Typical geometry with two source arrays and two streamers:

Marine swath shooting

- In shallow water where streamers cannot be towed, bottom hydrophone cables can be deployed in swaths.
- A source boat will move along, across, or zigzag between the cables to cover 3D volume.

Note that this particular pattern gives good in-line but poor offset-azimuthal coverage

Streamer feathering

- Due to cross-current, the streamers and sources often deviate away from the track.
 - This shifts the actual reflection midpoints and creates uneven fold.
- Therefore, accurate positioning of all components is critical.

Positioning

- GPS and radio trilateration of the ship (to ~10-m accuracy)
 - Sometimes anchored pingers are also used to locate the survey within an area.
- Pingers (tuned acoustic pulse devices) are used to trilaterate the mutual positions of the ship, sources, and streamers.
- Feathering direction is control ed with compasses installed in the streamer.
- This results in great redundancy of navigation data.
 - This redundancy is utilized in data reduction using the ideas of the Generalized Inverse...

3D data displays

- A variety of geometrical types
- Attributes (amplitudes, their gradients, phases, acoustic impedance, porosity, directions, statistics)
- Colour (continuous or discontinuous palettes to highlight gradational character or contrasts)
- Interactive analysis using workstations

GEOL483.3

3D displays (Sheriff and Geldart, plate 7)

Directional attributes (Sheriff and Geldart, plate 6)

3D horizon tracking

- Manual ("point" or "stream") tracking
 - Good for consistent interpretation
- Automatic
 - Relies on a zero-phase wavelet (tracking the maximum amplitude)
 - Preferable for accurate amplitude analysis
- To identify correct reflection events, data are compared to borehole logs, synthetics, and VSPs

3D horizon autotracking

Height of search window: 6 Starting crossline # : 1

Starting coordinates (x,y): (40,150) for Mississippi

(41,176) for Wilcox

From Liner, 1999

