Reflection Seismic Processing

- General CMP processing sequence
- Highlights of some key steps
- Reading:
 - Sheriff and Geldart, Chapter 9

Reflection Seismic Processing

- Objective transform redundant reflection seismic records in the time domain into an interpretable depth image.
 - Data reduction and editing;
 - Transformation into conveniently computer-manageable form;
 - Removal of bad records;
 - Gathering;
 - CMP sorting;
 - Filtering in time and space;
 - Attenuation of noise;
 - Imaging
 - Final velocity and reflectivity image.

Importance of processing A line processed by several contractors

Seismic Processing Systems

- Usually geared to a particular type of application
 - Mostly CMP reflection processing;
 - Land or marine, 2D or 3D.
- Commercial:
 - ProMAX (Landmark);
 - Omega (Western Geophysical, marine);
 - Focus (Paradigm);
 - Amoco and almost every other company have their own...
 - Vista (Seismic Image Soft.).
- Universities:
 - Stanford Exploration Project;
 - Seismic UNIX (Colorado School of Mines);
 - FreeUSP (Amoco);
 - SIOSEIS (Scrippts, marine);
 - Our very own

CMP Processing Sequence

- Demultiplex, Vibroseis correlation, Gain recovery
 - Conversion from file formats produced by field data loggers into processingoriented formats
 - > SEG-Y, SEG-2.
 - ProMax, Focus, Omega, SU, Vista, etc., internal formats.
 - Often done in the field.
- 2) Field Geometry
 - Assignment of source-receiver coordinates, offsets, etc. in the trace headers.
- 3) Edit
 - Removal of bad traces (noisy channels, poorly planted geophones, channels contaminated by power line noise, etc.).

CMP Processing Sequence (continued)

- 4) First arrival picking
 - May be semi-automatic or manual;
 - Required for generation of refraction statics; models and for designing the mutes.
- 5) Elevation statics
 - Based on geometry information, compensates the travel-time variations caused by variations in source/receiver elevations.
 - Transforms the records as if recorded at a common horizontal datum surface.
- 6) Refraction statics
 - Builds a model for the shallow, low-velocity subsurface;
 - Compensates travel-time variations caused by the shallow velocities.
- 7) 'Top', 'bottom', and 'surgical' mute
 - Eliminates (sets amplitude=0) the time intervals where strong non-reflection energy is present:
 - First arrivals, ground roll, airwave.

CMP Processing Sequence (continued)

- 8) Gain recovery
 - Compensates geometrical spreading;
 - Based on a simple heuristic relation.
- 9) Trace balance
 - Equalizes the variations in amplitudes caused by differences in coupling;
 - In true-amplitude processing, replaced with 'surface-consistent deconvolution'.
- 10) Deconvolution or wavelet processing
 - Compresses the wavelet in time, attenuates reverberations.
 - Converts the wavelet to zero-phase for viewing
- 11) Gather, CMP sort
 - Often (in ProMax, Omega, Vista) done by using trace lookup tables instead of creating additional copies of the dataset.
- 12) Moveout (Radon, τ -p, f-k) filtering
 - Attenuates multiples, ground roll.

Deconvolution

Deconvolving (inverse) Filter

Objectives:

- 1) Compress the wavelet into a sharp minimum- or zero-phase shape
- 2) Broaden (flatten) its spectrum.

Wavelet shaping

- Shape of the source wavelet is estimated from autocorrelation of the data
- Time-variant "spectral whitening" (flattening within an estimated bandwidth) is applied
- A filter is designed to convert the wavelet into zero-phase

Migrated stack before wavelet processing

Migrated stack after wavelet processing

CMP Processing Sequence (continued)

13) Velocity analysis

For each of the CMP gathers, determines the optimal stacking velocity.

14) Dip Moveout (DMO) correction

Transforms the records so that the subsequent NMO+stack work well even in the presence of dipping reflectors.

15) Normal Moveout (NMO) correction

- Removes the effects of source-receiver separation from reflection records;
- Transforms the records as if recorded at normal incidence.

16) Residual statics

 Removes the remaining small traveltime variations caused by inaccurate statics or velocity model

Normal Moveout (NMO) correction

NMO correction transforms a reflection record at offset x into a normal-incidence (x=0) record:

$$t(x) \rightarrow t_0 = \sqrt{t^2(x) - \left(\frac{x}{V}\right)^2} \approx t(x) - \frac{1}{2t(x)} \left(\frac{x}{V}\right)^2$$
"Stacking velocity"

Stacking velocity is determined from the data, as a measure of the reflection hyperbola best aligned of with the reflection.

Velocity Analysis

CMP gathers are stacked along trialvelocity hyperbolas and presented in timevelocity diagrams.

Velocity analysis (Common-Velocity Stacks)

- Groups of CMP gathers are NMO-corrected (hyperbolas flattened) using a range of trial velocities and stacked.
- Velocities are picked at the amplitude peaks and best resolution in the stacks.

NMO stretching

- Note that NMO correction affects the shallower and slower reflections stronger
 - This is called "NMO stretching"
 - This distortion is controlled during processing by setting a limit in relative stretching (typically ~25%)

NMO-DMO-Migration

- DMO assists NMO by correcting for the time delay on an offset trace assuming zero dip.
- For a dipping reflector, DMO moves the data to the correct zero-offset trace. Migration further moves it to the subsurface location.

Deregowski, 1986

CMP Processing Sequence (continued)

- 17) Steps 13-16 above are usually <u>iterated</u> 3-5 times to produce accurate *velocity* and *residual statics* models.
 - Success of velocity analysis depends on the quality of DMO/NMO and residual statics, and vice versa.

18) CMP Stack

- Produces a zero-offset section;
- Utilizes CMP redundancy to increase the Signal/Noise ratio.
- Can employ various normalization ideas, e.g., diversity stack

19) Migration

- Transforms the zero-offset time section into a depth image;
- Establishes correct extents and dips of the reflectors.

20) Frequency filtering and display

- Attenuates noise
- Provides best display for interpretation

Migration

- A simplified variant of 'inversion'
 - Inverts 'time section' for true 'depth image'.
- Establishes true positions and dips of reflectors.
- Collapses diffractions.

Moveout $(f-k, \tau-p)$ filtering

Removes coherent events with undesired moveouts

Example: CMP gathers

Example: CMP gathers after NMO correction

Example: CMP gathers after NMO+DMO corrections

Example: Velocity analysis

Example: NMO(with DMO) stack Zero-offset section

Example: Final migrated stack

