Reflection coefficients

- Reflection and conversion of plane waves
- Snell's law
- P/SV wave conversion
- Scattering matrix
- Zoeppritz equations
- Amplitude vs. Angle and Offset relations

Reading:

- > Telford et al., Section 4.2.
- Sheriff and Geldart, Chapter 3

Surface reflection transmission, and conversion

- Consider waves incident on a welded horizontal interface of two uniform halfspaces:
 - Because of their vertical motion, P and SV waves couple to each other on the interface,what about SH waves?

 therefore, there are 8 possible waves interacting with each other at the boundary.

Free-surface reflection and conversion

$$\vec{u_{P}}(\vec{x},\vec{z}) = \left(\frac{\partial\phi}{\partial x}, 0, \frac{\partial\phi}{\partial z}\right), \quad \phi = \phi^{inc} + \phi^{refl} \quad P\text{-waves}$$
$$\vec{u_{S}}(\vec{x},\vec{z}) = \left(\frac{-\partial\psi}{\partial z}, 0, \frac{\partial\psi}{\partial x}\right), \quad \psi = \psi^{refl} \quad SV\text{-wave}$$

Free-surface reflection and conversion (2)

Traction (force acting on the surface):

$$\vec{F}_{p}(\vec{x},\vec{z}) = (2\mu \frac{\partial^{2} \phi}{\partial x \partial z}, 0, \lambda \nabla^{2} \phi + 2\mu \frac{\partial^{2} \phi}{\partial z^{2}}), P$$
-waves
 $\vec{F}_{s}(\vec{x},\vec{z}) = (\mu(\frac{\partial^{2} \psi}{\partial x^{2}} - \frac{\partial^{2} \psi}{\partial z^{2}}), 0, \lambda \nabla^{2} \phi + 2\mu \frac{\partial^{2} \psi}{\partial x \partial z}), SV$ -wave
Consider plane harmonic waves:
 $\phi^{inc} = A_{p}^{inc} \exp [i \omega (\frac{\vec{x} \vec{n}_{incP}}{V_{p}} - t)]$ incident P
 $\phi^{refl} = A_{p}^{refl} \exp [i \omega (\frac{\vec{x} \vec{n}_{reflP}}{V_{p}} - t)]$ reflected P
 $\psi^{refl} = A_{s}^{refl} \exp [i \omega (\frac{\vec{x} \vec{n}_{reflS}}{V_{s}} - t)]$ reflected SV

• What are the dependencies of ϕ and ψ above on coordinate *x*?

Free-surface reflection and conversion (3)

- The boundary condition is: Force(x,t)=0
- Note that functional dependences of and w on (x, t) are:

$$\frac{\sin i}{V_p} = \frac{\sin i^*}{V_p} = \frac{\sin j}{V_s} = p$$

Boundary condition: $\sigma_{xz} = \sigma_{yz} = \sigma_{zz} = 0$ on z=0 x

Free-surface reflection and conversion (4)

Displacement in plane waves is thus:

$\vec{u_p}(\vec{x},\vec{z}) = (i\omega p\phi, 0, \pm i\omega \frac{\cos j}{V_p}\phi),$	P-waves
$\vec{u}_{s}(\vec{x},\vec{z}) = (\mp i\omega \frac{\cos j}{V_{P}}\psi, 0, i\omega p\psi),$	SV-wave

...and traction:

 $\vec{F}_{P}(\vec{x},\vec{z}) = (-2\rho V_{S}^{2} p\phi, 0, -\rho(1-2V^{2} p^{2})i\omega^{2}V_{S}\phi),$

 $\vec{F}_{s}(\vec{x},\vec{z}) = (\rho(1-2V^{2}p^{2})i\omega^{2}V_{s}\psi, 0, 2\rho V_{s}^{2}p\psi, 0).$

Free-surface reflection and conversion (5)

Traction vector at the surface must vanish:

 $F_x = F_z = 0$

- Therefore, we have two equations to constrain the amplitudes of the two reflected waves;
- Their solution:

$$\frac{A_{P}^{refl}}{A_{P}^{inc}} = \frac{4V_{s}^{4}p^{2}\frac{\cos i}{V_{P}}\frac{\cos j}{V_{s}} - (1 - 2V_{s}^{2}p^{2})^{2}}{4V_{s}^{4}p\frac{\cos i}{V_{P}}\frac{\cos i}{V_{s}} + (1 - 2V_{s}^{2}p^{2})^{2}},$$

$$4V_{s}^{2}p\frac{\cos i}{V_{s}}(1 - 2V_{s}^{2}p^{2})^{2}$$

$$\frac{A_{S}^{refl}}{A_{P}^{inc}} = \frac{-4V_{S}p}{4V_{S}^{4}p}\frac{(1-2V_{S}p)}{V_{P}} + (1-2V_{S}^{2}p^{2})^{2}}$$

Free-surface reflection and conversion (5)

Complete reflection/transmission problem

Scattering matrix

All reflection and refraction amplitudes at an interface (Derivation of the Scattering Matrix)

- The scattering matrix can be used to easily derive all possible reflection and refraction amplitudes at once:
 - consider matrix N that is giving displacement and traction at the interface for the incident field, and a similar matrix M for the scattered field:

$$\begin{pmatrix} u_{x} \\ u_{y} \\ \sigma_{xz} \\ \sigma_{zz} \end{pmatrix} = \boldsymbol{M} \begin{pmatrix} \dot{\boldsymbol{P}}_{1} \\ \dot{\boldsymbol{S}}_{1} \\ \dot{\boldsymbol{P}}_{2} \\ \dot{\boldsymbol{S}}_{2} \end{pmatrix} = \boldsymbol{N} \begin{pmatrix} \dot{\boldsymbol{P}}_{1} \\ \dot{\boldsymbol{S}}_{1} \\ \dot{\boldsymbol{P}}_{2} \\ \dot{\boldsymbol{S}}_{2} \end{pmatrix}.$$

 This is a general (matrix) form of Zoeppritz' equations (relating the incident, reflected, and converted wave amplitudes).

• Their general solution: $S = M^{-1} N$

M and N

The matrices M and N consist of the coefficients of plane-wave amplitudes and tractions for P- and SV-waves:

M =	$ \begin{pmatrix} -V_{P_{I}} \\ \cos i \\ 2\rho_{1}V_{SI}^{2} \\ \rho_{1}V_{PI} \end{pmatrix} $	$\frac{p}{i_1}$ $p\cos i_1$ $2V_{SI}^2 p^2$	$-\cos j_{1}$ $-V_{SI} p$ $\rho_{1}V_{SI}(1-2V)$ $2\rho_{1}V_{SI}^{2} p \cos \theta$	$p_{SI}^{2} p^{2} p^{2} p^{2} p^{2}$ $p_{SI} p_{1} p_{2} V$	$V_{P2} p \\ \cos i_{2} \\ \rho_{2} V_{S2}^{2} p \cos i_{2} \\ F_{P2} (1 - 2 V_{S2}^{2}) $	$\begin{pmatrix} \cos j_2 \\ -V_{s2} p \\ \rho_2 V_{s2} (1 - 2V_{s2}^2 p^2) \\ \rho^2 \end{pmatrix}, -2\rho_2 V_{s1}^2 p \cos j_2 \end{pmatrix},$
N =	$V_{PI} p$ $\cos i_{1}$ $2 \rho_{1} V_{SI}^{2} p q$ $\rho_{1} V_{PI} (1-2)$	$\cos i_1 \rho_1 \\ V_{SI}^2 p^2) -$	$\cos j_{1}$ $-V_{SI} p$ $V_{SI} (1-2V_{SI}^{2})$ $2 \rho_{1} V_{SI}^{2} p \cos \theta$	$(p^2) \qquad 2\rho_1$ $s_j = -\rho_2 V$		$\begin{pmatrix} -\cos j_{2} \\ -V_{s2} p \\ \rho_{2} V_{s2} (1 - 2 V_{s2}^{2} p^{2}) \\ 2 \rho_{2} V_{s1}^{2} p \cos j_{2} \end{pmatrix},$
	<i>S</i> ≡	P P P S P P P P P P P S	È Ý È Ś È À È È	Ý Ý Ý Ś Ý Ř Ý Š	Ś Ý Ś Ś Ś À Ś Ì	$=M^{-1}N$.

This is matrix form of *Knott' equations* (solutions for reflected and refracted amplitudes)

Partitioning at normal incidence

• At normal incidence, $i_1 = i_2 = j_1 = j_2 = 0$, and p = 0:

	P	S	P	S		P	S	P	S
	0	-1	0	1		0	1	0	1
	1	0	1	0	N —	1	0	1	0
171 -	0	$ ho_1 V_{SI}$	0	$\rho_2 V_{s2}$	<i>I</i> v –	0	$ ho_{1}V_{SI}$	0	$\rho_2 V_{s2}$
	$\left\langle -\rho_{1}V_{PI}\right\rangle$	0	$\rho_2 V_{P2}$	0		$ ho_1 V_{PI}$	0	$-\rho_2 V_{P2}$	0

The *P- and S-waves do not interact at normal incidence*, and so we can look, e.g., at *P*-waves only (extract the odd-numbered columns):

$$M = \begin{pmatrix} -\theta & -\theta & -\theta \\ 1 & 1 \\ -\theta & -\theta & -\theta \\ -\rho_1 V_{PI} & \rho_2 V_{P2} \end{pmatrix}, N = \begin{pmatrix} -\theta & -\theta & -\theta \\ 1 & 1 \\ -\theta & -\theta & -\theta \\ \rho_1 V_{PI} & -\rho_2 V_{P2} \end{pmatrix}, Note that these two constraints are satisfied automatically Drop the two trivial equations (#1 and 3) and obtain:$$

$$\begin{pmatrix} \dot{P} \not P & \dot{P} \not P \\ \dot{P} \dot{P} & \dot{P} \dot{P} \end{pmatrix} = M^{-1} N = \begin{pmatrix} 1 & 1 \\ -Z_1 & Z_2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ Z_1 & -Z_2 \end{pmatrix} = \frac{1}{Z_1 + Z_2} \begin{pmatrix} Z_2 - Z_1 & Z_1 - Z_2 \\ 2Z_1 & 2Z_2 \end{pmatrix}$$

Reflection and transmission coefficients

Reflection and Transmission at normal incidence

- Thus, at normal incidence (in practice, for angles up to ~15°)
 - Reflection coefficient:

$$R = \frac{Z_2 - Z_1}{Z_1 + Z_2} \approx \frac{\Delta Z}{2} Z \approx \frac{1}{2} \Delta (lnZ) \approx \frac{1}{2} (\frac{\Delta V_P}{V_P} + \frac{\Delta \rho}{\rho})$$

Transmission coefficient:

$$T = \frac{2Z_1}{Z_1 + Z_2}$$

Energy Reflection coefficient:

$$E_R = R^2$$

Energy Transmission coefficient:

$$E_{T} = 1 - E_{R} = \frac{2Z_{1}Z_{2}}{Z_{1} + Z_{2}}.$$

- Note that the energy coefficients do not depend on the direction of wave propagation, but R changes its sign.
- *R* < 0 leads to *phase reversa*l in reflection records.

Typical impedance contrasts and reflectivities

	First medium		Second medium				
Interface	Velocity	Density	Velocity	Density	Z_{1}/Z_{2}	R	E_{R}
Sandstone on limestone	2.0	2.4	3.0	2.4	0.67	0.2	0.040
Limestone on sandstone	3.0	2.4	2.0	2.4	1.5	-0.2	0.040
Shallow interface	2.1	2.4	2.3	2.4	0.93	0.045	0.0021
Deep interface	4.3	2.4	4.5	2.4	0.97	0.022	0.0005
"Soft" ocean bottom	1.5	1.0	1.5	2.0	0.50	0.33	0.11
"Hard" ocean botom	1.5	1.0	3.0	2.5	0.20	0.67	0.44
Surface of ocean (from below)	1.5	1.0	0.36	0.0012	3800	-0.9994	0.9988
Base of weathering	0.5	1.5	2.0	2.0	0.19	0.68	0.47
Shale over water sand	2.4	2.3	2.5	2.3	0.96	0.02	0.0004
Shale over gas sand	2.4	2.3	2.2	1.8	1.39	-0.16	0.027
Gas sand over water sand	2.2	1.8	2.5	2.3	0.69	0.18	0.034

Table 3.1 Energy reflected at interface between two media

All velocities in km/s, densities in g/cm³; the minus signs indicate 180° phase reversal.

GEOL483.3

Oblique incidence Amplitude versus Angle (AVA) variation

- At oblique incidence, we have to use the full M⁻¹N expression for S
 - Amplitudes and polarities of the reflections vary with incidence angles.

Oblique incidence Small-contrast AVA approximation

- $\Delta V_{P'} \Delta V_{S'} \Delta \rho$, and therefore, ray angle variations are considered small
 - Shuey's (1985) formula gives the variation of R from the cae on normal incidence in terms of ΔV_{p} and $\Delta \sigma$ (Poisson's ratio):

$$\frac{R(\theta)}{R(0)} \approx 1 + \frac{P \sin^2 \theta}{P \sin^2 \theta} + \frac{Q(\tan^2 \theta - \sin^2 \theta)}{Q(\tan^2 \theta - \sin^2 \theta)}$$
where:

$$R(0) \approx \frac{1}{2} \left(\frac{\Delta V_p}{V_p} + \frac{\Delta \rho}{\rho} \right),$$

$$P = \left[Q - \frac{2(1+\sigma)(1-2\sigma)}{1-\sigma} \right] + \frac{\Delta \sigma}{R(0)(1-\sigma)^2},$$

$$Q = \frac{\frac{\Delta V_p}{V_p}}{\frac{\Delta V_p}{V_p} + \frac{\Delta \rho}{\rho}} = \frac{1}{1 + \frac{\Delta \rho/\rho}{\Delta V_p/V_p}}.$$

Amplitude versus Offset (AVO)

- AVO is a group of processing techniques designed to detect reflection AVA effects:
 - Records processed with *true amplitudes* (preserving proportionality to the actual recorded amplitudes);
 - Source-receiver offsets converted to the incidence angles;
 - From pre-stack (variable-offset) data gathers, parameters R(0), P and Q are estimated:

 $R(\theta) \approx R(0) [1 + P \sin^2 \theta + Q (\tan^2 \theta - \sin^2 \theta)].$

 Thus, additional attributes are extracted to distinguish between materials with varying σ.

Three practical AVA cases

Three typical AVA behaviours:

- Amplitude decreases with angle without crossing 0;
- 2) Amplitude increases;
- Amplitude decreases and crosses 0 (reflection polarity changes)

(Above: $V_{p_2}/V_{p_1} = \rho_2/\rho_1 = 1.25; 1.11; 1.0; 0.9, \text{ and } 0.8$) From

From Ostrander, 1984

AVA (AVO) anomalies

From Ostrander, 1984

Amplitude versus Offset (AVO) Gas sand vs. wet sand

- Gas-filled pores tend to reduce V_p more than $V_{s'}$ and as a result, the Poisson's ratio (σ) is reduced.
- Negative ΔV_ρ and Δσ thus cause negative-polarity bright reflection ("bright spot") <u>and</u> an AVO effect (increase in reflection amplitude with offset) that are regarded as hydrocarbon indicators.
 - However, not every AVO anomaly is related to a commercial reservoir...

