Refraction seismic Method

- Field techniques
- Inversion for refractor velocity, depth, and dip
- Delay time
- Interpretation
 - Basic-formula methods
 - Delay-time methods
 - Wavefront reconstruction methods

Reading:

Sheriff and Geldart, Chapter 11

Field techniques

- In-line shooting
 - May shoot segments (e.g., C-D, D-E, E-F, etc. below) in order to economize
 - Depending on the target, longer or shorter profiles, with or without recording at shorter offsets

Refraction Interpretation Reversed travel times

- One needs reversed recording (in opposite directions) for resolution of dips.
- The reciprocal times, $T_{R'}$ must be the same for reversed shots.
- Dipping refractor is indicated by:
 - Different apparent velocities (=1/p, TTC slopes) in the two directions;
 - determine V₂ and \(\alpha \) (refractor velocity and dip).
 - Different intercept times.

Determination of Refractor Velocity and Dip

- Apparent velocity is V_{app} = 1/p, where p is the ray parameter (i.e., slope of the travel-time curve).
 - Apparent velocities are measured directly from the observed TTCs;
 - $V_{app} = V_{refractor}$ only in the case of a horizontal layering.
 - For a dipping refractor:
 - > Down dip: $V_d = \frac{V_1}{\sin(i_c + \alpha)}$ (slower than V_1); > Up-dip: $V_u = \frac{V_1}{\sin(i_c - \alpha)}$ (faster).
- From the two reversed apparent velocities, i_c and α are determined:

$$i_{c} + \alpha = \sin^{-1} \frac{V_{1}}{V_{d}}, \qquad i_{c} - \alpha = \sin^{-1} \frac{V_{1}}{V_{u}}$$

$$i_{c} = \frac{1}{2} \left(\sin^{-1} \frac{V_{1}}{V_{d}} + \sin^{-1} \frac{V_{1}}{V_{u}} \right),$$

$$\alpha = \frac{1}{2} \left(\sin^{-1} \frac{V_{1}}{V_{d}} - \sin^{-1} \frac{V_{1}}{V_{u}} \right).$$

From $i_{c'}$ the refractor velocity is:

$$V_2 = \frac{V_1}{\sin i}.$$

Determination of Refractor Depth

From the intercept times, t_d and t_u, refractor depth is determined:

Delay time

(the basis for most refraction interpretation techniques)

- Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).
 - In this case, we can separate the times associated with the source and receiver vicinities: $t_{SR} = t_{SX} + t_{XR}$.
- Relate the time t_{SX} to a time along the refractor, t_{BX} :

$$t_{SX} = t_{SA} - t_{BA} + t_{BX} = t_{SDelay} + X/V_2.$$

$$t_{SDelay} = \frac{SA}{V_1} - \frac{BA}{V_2} = \frac{h_s}{V_1 \cos i_c} - \frac{h_s \tan i_c}{V_2} = \frac{h_s}{V_1 \cos i_c} (1 - \sin^2 i_c) = \frac{h_s \cos i_c}{V_1}$$

Thus, the source and receiver delay times are:

Basic-formula interpretation (*The ABC method*)

Combine the refraction times recorded along A-C, B-C, and A-B:

$$t_{AC} + t_{CB} - t_{AB} \approx 2 t_{Delay(C)} = \frac{2 h_C \cos i_c}{V_1}$$

Therefore:

$$h_{C} \approx \frac{V_{1}}{2\cos i_{c}} \left(t_{AC} + t_{CB} - t_{AB}\right).$$

Note the typical time-to-depth conversion factor:

$$\frac{V_1}{\cos i_c} = \frac{V_1}{\sqrt{1-\sin^2 i_c}} = \frac{V_1 V_2}{\sqrt{V_2^2 - V_1^2}}.$$

Delay-time methods Barry's method

Note that the ABC formula applies to the intercept times, with any value of V₂ assumed:

$$t^{\text{int}} = t - \frac{x}{V_2}$$

$$t^{\text{int}}_{AC} + t^{\text{int}}_{CB} - t^{\text{int}}_{AB} \approx 2t_{Delay(C)} = \frac{2h_C \cos i_C}{V_1}$$

$$S_1 \qquad S_2 \qquad G_1 \qquad G_2$$

$$V_1$$

$$A \qquad C \qquad B$$

Thus the shot delay at C is:

$$t_{Delay(C)} \approx \frac{1}{2} \left(t_{CB}^{int} + t_{AC}^{int} - t_{AB}^{int} \right)$$

And geophone delay at B:

$$t_{\mathit{Delay}(\mathit{B})} \! = \! t_{\mathit{Delay}(\mathit{CB})} \! - t_{\mathit{Delay}(\mathit{C})} \! \approx \! \frac{1}{2} \! \left(t_{\mathit{CB}}^{\mathsf{int}} \! - \! t_{\mathit{AC}}^{\mathsf{int}} \! + \! t_{\mathit{AB}}^{\mathsf{int}} \right)$$

Delay-time methods Barry's method

- 1) Plot the time-reduced travel times.
- 2) Calculate the geophone delay times.
- 3) Plot the delay times at the "offset geophone" positions.
- 4) Adjust V_2 until the lines from reversed profiles are parallel.

Delay-time methods Wyrobek's method

Plus-Minus Method

(Hagedoorn)

- Assume that we have recorded two headwaves in the opposite directions, and have estimated the velocity of the overburden, V₁
 - How can we map the refracting interface?

- Solution:
 - $\text{Profile } S_1 \to S_2: \quad t_{S_1D} = \frac{x}{V_2} + t_{S_1} + t_D;$
 - > Profile $S_2 \to S_1$: $t_{S_2D} = \frac{(S_1^2 S_2 x)}{V_2} + t_{S_2} + t_{D.}$
 - Form PLUS travel-time:

$$t_{PLUS} = t_{S_1D} + t_{S_2D} = \frac{S_1 S_2}{V_2} + t_{S_1} + t_{S_2} + 2t_D = t_{S_1 S_2} + 2t_D.$$

Hence: $t_D = \frac{1}{2} (t_{PLUS} - t_{S_1 S_2}).$

• To determine i_c (and depth), still need to find V_2 .

Plus-Minus Method (Continued)

- To determine V_2 :
 - Form MINUS travel-time: this is a constant! $t_{MINUS} = t_{S_1D} t_{S_2D} = \frac{2x}{V_2} \left[\frac{S_1S_2}{V_2} + t_{s_1} t_{s_2} \right].$ Hence: $slope[t_{MINUS}(x)] = \frac{2}{V_2}.$
 - The slope is usually estimated by using the Least Squares method.
- <u>Drawback</u> of this method averaging over the precritical region.

Generalized Reciprocal Method (GRM)

- Introduces offsets ('XY') in travel-time readings in the forward and reverse shots;
 - so that the imaging is targeted on a compact interface region.
- Proceeds as the plus-minus method;
- Determines the 'optimal' XY:
 - 1) Corresponding to the most linear velocity analysis function;
 - 2) Corresponding to the most detail of the refractor.

■ The *velocity analysis function*:

$$(t_V = \frac{1}{2}(t_{S_1D} - t_{S_2D} + t_{S_1S_2}),$$

should be linear, slope = $1/V_2$;

■ The *time-depth function*:

$$t_D = \frac{1}{2} (t_{S_1D} + t_{S_2D} - t_{S_1S_2} - \frac{XY}{V_2}).$$

this is related to the desired image:

$$h_{D} = \frac{t_{D}V_{1}V_{2}}{\sqrt{V_{2}^{2} - V_{1}^{2}}}$$

Wavefront reconstruction methods

Head-wave wavefronts can be propagated back into the subsurface...

Wavefront reconstruction methods

- ... and combined to form an image of the refractor:
 - Refractor is the locus of (x,z) points such that:

$$t_{Forward}(x, z) + t_{Reversed}(x, z) = T_{Reciprocal}$$

Note the similarity with the PLUS-MINUS method!

