SEISMOLOGY

- Utilizes seismic (sound) waves to make statements about the Earth's structure.
- By far the most high-resolution geophysical technique.
- As a Geophysical discipline, consists of:
 - Measurements ('data acquisition');
 - Emphasis on efficient acquisition techniques, vast volumes of data;
 - Data processing;
 - Very important and computer-based;
 - Interpretation in terms of models and geological concepts:
 - Forward (direct) modelling predict seismic observations in a known subsurface structure;
 - Inverse modelling Given the observed wavefield (travel times), determine the structure and its uncertainty.
 - Usually integrated with surface and borehole observations.

Reading:

- Telford et al., Chapter 1.
- Sheriff and Geldart, Chapter 1.

Seismic Methods

- Rely on contrasts in physical properties associated with rock or mineral bodies:
 - Look for 'anomalies' (departures from 'regular behaviour').
- Specialized methods and tools to solve different problems:
 - Different seismic methods measure different properties (i.e., velocities, impedances);
 - Different frequency bands
 - The different kinds of data are combined during interpretation or 'simultaneous inversion'.
 - Most seismic inversion techniques are highly mathematically or computationally formalized.

Seismic Methods

Their Resolution; 'Passive' and 'Active'

Method	Property	Resolution	Value Measured
Surface refraction	Velocities, velocity gradients	20 m-100 km	Travel times
Surface reflection	Impedance contrasts	0.5 – 20 m	Travel times, amplitudes, reflection patterns
Vertical seismic profiling	Velocities, reflectivity	0.2 - 5 m	Travel times, waveforms
Borehole acoustic logs	Velocities near the borehole, at ~10 – 50 kHz	0.1 m	Pulse time delays
Borehole cross-well	Velocity contrasts at ~10 - 50 kHz	~5 m	Travel-time delays
Laboratory ultrasonic	Velocities at ~100 kHz, anisotropy	1-5 cm	Travel times in samples
Surface waves	Velocity structure (primarily of S-waves)	10 m – 100 km	Phase spectra of waves from artificial and natural seismic sources; Dispersion curves
Monitoring	Location of creep within reservoirs and mines, natural earthquakes, weapons tests	100 m – 30 km	Travel times
Teleseismic	Location of earthquakes, velocity structures, reflecting and converting boundaries	30 – 100 km	Waveforms of body and surface waves (~1-1000 sec periods)
Normal modes	Whole-Earth oscillations	1000 km	Earth movements at > 1000 sec periods

Acoustic/Seismic Spectrum

- Key to signal penetration and resolution:
 - Resolution (the degree of resolvable detail) is typically proportional to frequency;
 - Signal <u>penetration</u> quickly decreases with increasing frequency.

Earth is complex

and so are the observations, but models are always simplified

- Observations are limited to the surface or a few boreholes.
- Different rocks often have similar seismic properties:
 - Seismic waves are sensitive to combinations of V_p , V_s , and density;
 - Spatially-averaged and sample-derived properties are different;
 - Seismic properties are frequency-dependent.
- Therefore, ambiguities in interpretations are common.
- Solution always estimate the errors and apply multiple methods to remove ambiguity.

Signal and Noise

- Seismic data always contain SIGNAL and NOISE
 - ◆Signal 'deterministic' part consistent with the method employed (2-D, VSP)
 - Noise anything else mixed into the observation
- Sources of noise:
 - ◆Instrument
 - ◆Geologic sources
 - Simplified theory (e.g., 2D sounding in a 3D Earth)
- Types of noise
 - Coherent (caused by the signal itself, worst of all)
 - Incoherent (random, coming from unrelated sources)
- Data processing is designed to increase the signal/noise (S/N) ratio

Seismic Noise

From Reynolds, 1997

Seismic Data

(Exploration)

Seismic Data (Refraction-reflection crustal)

Depth coverage to sub-Moho (~40 km);

Good resolution of velocities;

SW

 Strong reflections from the base of the crust (the 'Moho').

Seismic Data (Peaceful Nuclear Explosions)

Seismic Models (From Peaceful Nuclear Explosions)

- Velocity heterogeneity;
- Reflecting boundaries;
- Attenuating zones (partial melts?) within the mantle.
- Scattering regions (?).

TeleSeismic Imaging

(Using seismic signals from earthquakes)

Major Organizations and Journals

- International Union of Geodesy and Geophysics (IUGG).
- International Association of Seismology and Physics of the Earth's Interior (IASPEI)
 - Mainly global (earthquake) seismology.
- Incorporated Research Institutions for Seismology (IRIS)
 - Collects and disseminates data from global networks.
- Seismological Society of America
 - "Bulletin of the Seismological Soc. of America".
- Canadian Geophysical Union (CGU).
- Canadian Society of Exploration Geophysicists (CSEG)
 - "'Canadian Journal of Exploration Geophysics", "Recorder".
- American Geophysical Union (AGU)
 - "Journal of Geophysical Research", "Geophysical. Research Letters", "Reviews of Geophysics".
- Society of Exploration Geophysicists (SEG)
 - 'Geophysics', 'The Leading Edge'.
- European Association of Exploration Geophysicists (EAEG)
 - · "Geophysical Prospecting".