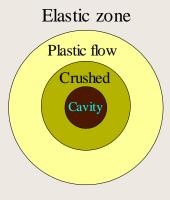
Seismic Sources

- Seismic sources
 - Requirements;
 - Principles;
 - Onshore, offshore.
 - Reading:
 - > Telford et al., Section 4.5
 - Sheriff and Geldart, Chapter 7

Seismic Source


- Localized region within which a sudden increase in elastic energy leads to rapid stressing of the surrounding medium.
- Most seismic sources preferentially generate P-waves
 - Easier to generate (pressure pulse);
 - Easier to record and process (earlier, more impulsive arrivals).
- Requirements
 - Broadest possible frequency spectrum;
 - Sufficient energy;
 - Repeatability;
 - Safety environmental and personnel;
 - Minimal cost;
 - Minimal coherent (source-induced) noise.

Land Source

- Explosives chemical base
 - Steep pressure pulse.
 - Shotguns, rifles, blasting caps;
 - ...bombs, nuclear blasts...
- Surface (mechanical)
 - Weight drop, hammer;
 - Piezoelectric borehole sources (ultrasound);
- Continuous signal
 - Vibroseis (continuously varying frequency, 10-300 Hz)
 - Mini-Sosie (multiple impact);
 - Combination with Vibroseis (Swept Impact Seismic Technique, SIST)
 - Drill bit ('Seismic While Drilling');
 - sparkers, ...truck spark plugs.

Mechanism of generation of seismic waves by explosion

- **Stage 1**: Detonation.
 - Start of explosion electric pulse ignites the *blasting* cap placed inside the charge. The pulse is also transmitted to recorder to set t = 0;
 - Disturbance propagates at ~ 6-7 km/s (supersonic velocity); surrounding medium is unaffected;
 - The explosive becomes hot gas of the same density as the solid hence its pressure is very high (several GPa)
- **Stage 2**: Pressure pulse spreads out spherically as an *inelastic shock wave*
 - Stresses >> material strength;
 - Extensive cracking in the vicinity of the charge.
- **Stage 3**: At some distance, the stress equals the elastic limit
 - Pressure pulse keeps spreading out spherically as an elastic wave.

Important parameters of an explosion

Radius of the Explosion Cavity:

$$R[ft] = BW^{\frac{1}{3}}$$
 Weight in lbs

Rock type	Granite	Chalk	Limestone	Soft Sandstone	Clay
В	0.46	0.6	0.3-1.0	1.3	1.3

• Pulse width: $T[ms] = 2.8 \cdot W^{\frac{1}{3}}$

Frequency decreases for larger charges.

- Energy:
 - Only 4 % (soft sandstone), 9% (clay) to 10-20 % (granite) of chemical energy is radiated as seismic waves;
 - Absorption and scattering cause energy loss:
 - > At 3 m from the source, there remains 2.5 % of available energy;
 - > At 30 m 0.5 %.
- Effects of shot depth:
 - If water table is shallow place shots below it;
 - Seismic amplitude increases as the shot depth decreases
 - > However, ground roll becomes broadband and hard to attenuate.

Criteria for selection of explosives

Density

▶ Higher density means the explosive column length is shortened, resulting in an energy pulse of higher frequency. Higher frequency means better data quality. Typical values are 1.2-1.8 g/cc.

Velocity

- → Higher velocity means a higher frequency energy pulse will be generated because the explosive column detonates more quickly. Typical values are 6-8 km/sec.
- Ground velocities < 5 cm/s are considered safe for structures;

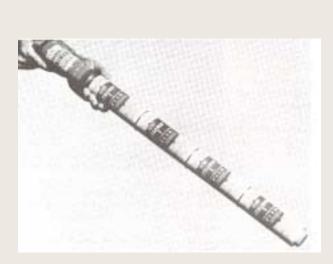
Detonation pressure

▶ Detonation pressure is an indication of energy released by the detonation. High detonation pressure is beneficial in seismic blasting. Typical range - 2-4 GPa (70-250 kBar).

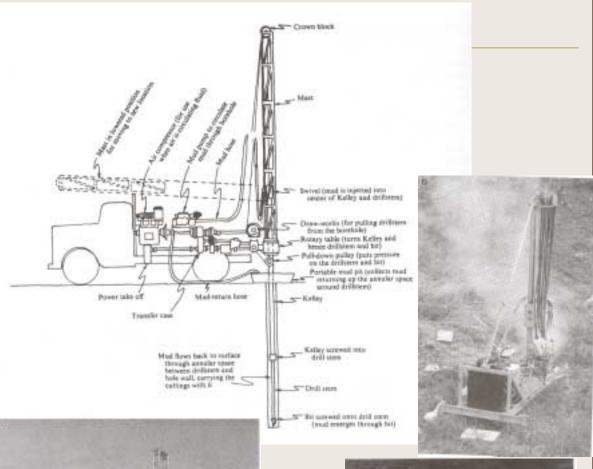
Self-disarming

• Unexploded charges left in the ground could be hazardous to future drilling or excavation. Seismic explosives that self-disarm are the best choice.

Standard for minimum distances


- International Association of Geophysical Contractors:
 - Pipelines 60 m;
 - Telephone lines 12 m;
 - Railroad tracks 30 m;
 - Electric lines 24 m;
 - Oil wells 60 m;
 - Water wells, cisterns, masonry buildings 90
 m.
- Ground velocity of 5 cm/s is concidered 'safe' for structures
 - For seismic explosives, achieved at distances $x = 23m^{1/3}$ m, where m is the charge in kg.

Explosives


- Gelatin dynamite, ammonium nitrate, pentolite (SEIS-X).
- Packaged in tins, cardboard or plastic tubes ~5 cm in diameter (0.5-5 kg each).
- Connected to make desired charges.

Charge emplacement

Surface Energy Sources

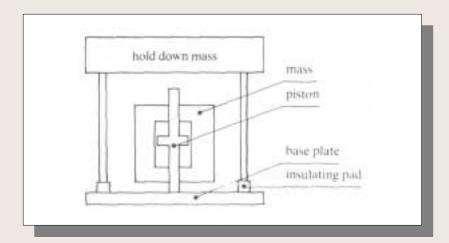
(less powerful, easier access)

Thumper/weight dropper

Bison Accelerated Weight Dropper

DIGPULSE 1180

Dynoseis

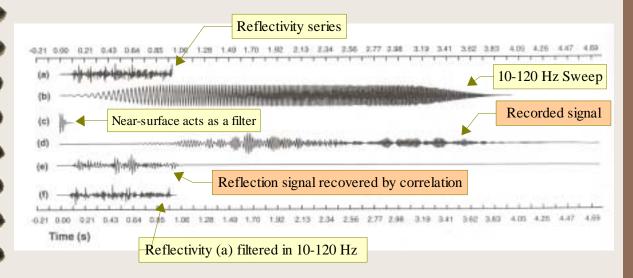

- ◆ Mixture of O₂ and propane exploded in an expandable chamber with a metal plate as the bottom
- Mounted on a truck or used as a buried explosive charge
- Self-disarming (the metal plate rusts through and the gas dissolves)

Vibroseis

Used in $> \frac{1}{2}$ of land seismic exploration

- Vibroseis
 - Energy introduced into the Earth in the form of a sweep of varying frequency for several seconds
 - Typical sweep time 7-35 s;
 - > ~45 minutes in recent mantle investigations
 - Typical frequencies 12 -> 60 Hz (upsweep) or 60 -> 12 Hz (downsweep);
 - Low energy density environmentally friendly;
 - Time-Distributed signal lower noise requirements.
 - A control signal causes a vibrator to exert variable pressure on a steel plate pressed against the Earth.
 - Radio-controlled hydraulics allows syn-phase vibration of a group of vibrators;
 - Shear-wave vibrators also shake the ground in horizontal directions

Vibroseis


Mini-Vibroseis

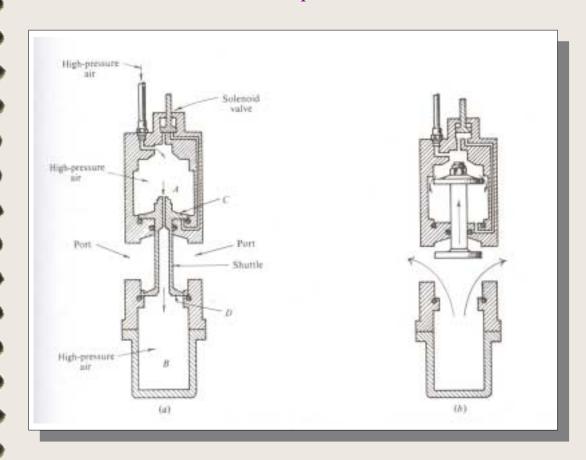
Vibroseis Correlation

- Recorded signal is cross-correlated with the sweep sent into the ground
 - As a result, matching waveform patterns (caused by reflections) are identified;
 - The signal is compressed in time the energy of the entire sweep is condensed into a single pulse.

Other Land Sources

(for shallow or mine investigations)

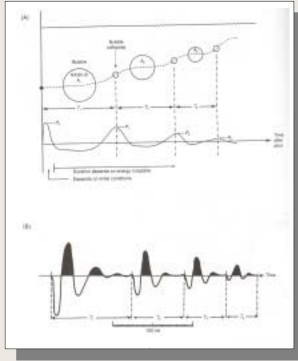
- Sosie, Mini-Sosie, SIST
 - → Impactor hits ground 5-15 times per second, in ~3-min long, pseudo-random series.


Sparkers

Air Gun

Primary marine source

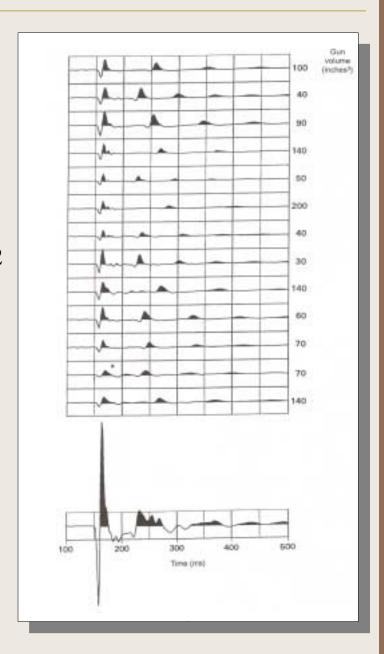
- High pressure bubble of air is released into the water
 - Operating pressure 10-15 MPa, in 1-4 ms;
 - Size (volume of the lower chamber) 10-2000 in³
 (0.16-33 liters)
 - Primary pulse is followed by a surface ghost and a train of bubble pulses



Air Gun

Bubble oscillations

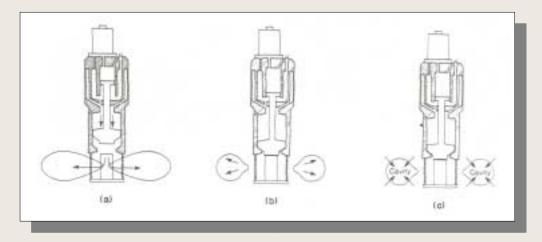
- Over-pressured bubble expands expelling water radially
 - ... and becomes.. under-pressured;
- Under-pressured bubble collapses under water pressure
 - ... and becomes over-pressured again.
- This cycle is repeated until the energy dissipates and/or bubble vents into through the surface.



Suppression of bubble pulses

Bubble pulses can be suppressed in two ways:

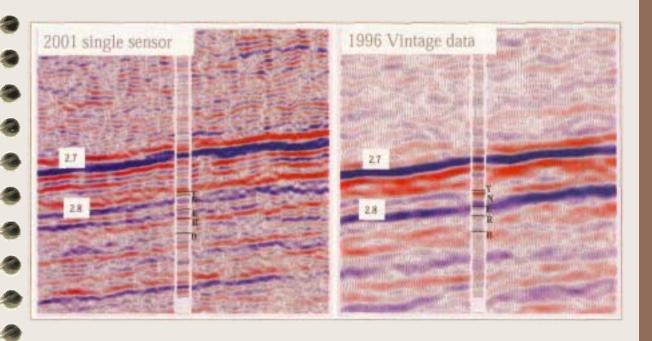
- Use array of air guns with different dimensions;
- Shallow firing (~2
 m) bubble vents
 to the surface.


During digital processing, the wavelet is further compressed by using deconvolution.

Other Marine Sources

Water gun

- Compressed air drives a piston that ejects a jet into the surrounding water;
- Vacuum cavity created behind the jet causes an implosion generating a strong pulse.
- No bubble pulse.


Piezoelectric transducers

- e.g., barium titanate change their volume when subjected to electric field;
- Up to 2-10 kHz frequency for shallow water work.

Q-Marine

- More then double improvement in resolution by:
 - Calibrated sources;
 - Single-sensor recording;
 - Steerable streamers;
 - An order of magnitude increase in sensor density;
 - Enhanced positioning systems.
 - Accurate processing.

