Tomography and Location

- Least-Squares inverse \bullet
- Generalised Linear Inverse ٠
- Forward and Inverse travel-time ۰ problems
- Seismic tomography Ø
- Location of seismic sources 0
- Reading:

Seismic (velocity) tomography

Tomography O

- The name derived from the Greek for "section drawing" - the idea is that the section appears *almost* automatically...
- Using multitude of source-receive pairs with rays crossing the area of interest.
- Looking for an unknown velocity structure.
- Depending on the type of recording used, it could be:
	- *Transmission tomography* (nearly straight rays between boreholes);
	- *Reflection tomography* (reflected rays; in this case, positions of the reflectors could be also found);
	- *Diffraction tomography* (using least-time travel paths according to Fermat rather than Snell's law; this is actually more a waveform inversion technique).

Cross-well tomography

- Consider the case of transmission "cross-well" tomography first.
	- \rightarrow This is the simplest case rays may be considered nearly straight, the data are abundant, and the coverage is *relatively* uniform.

These are the three principal concerns in tomography: 1) linearity of the problem; 2) density of data coverage; 3) good azimuthal coverage.

Travel-time inversion as a *linear inverse problem*

- First, we parameterize the velocity ٠ model
	- Typically, the parameterization is a grid of constant-velocity blocks (sometimes splines are used instead of the blocks).
	- This parameterization gives us a *model vector,* **m***.*

$$
\mathbf{m} = \begin{pmatrix} s_1 = 1/V_1 \\ s_2 = 1/V_2 \\ \dots \\ s_N = 1/V_N \end{pmatrix}.
$$

Second, we measure all travel times and arrange them into a data vector:

> $d^{observed}$ $\vert \cdot \vert$ *t* 1 *t* 2 $\begin{bmatrix} \cdots \\ t_M \end{bmatrix}$

.

Forward model

Third, we formulate the *forward model* ٥ to predict **d** from **m**. To achieve this, we need to *trace rays* through the model and measure the length of every ray's segment in each model block, *L ij* .

The travel time for *i*-th ray is then:

Generalized Linear Inverse

- $t_i = \sum L_{ij} s_j$ The model for travel times: ٠ can be written in matrix form: *j* $d = Lm$.
- Now, we want to substitute **d**=d^{observed} \bullet and solve for unknown **m**. This is called the *inverse problem*.
- Typically, matrix *L* is not invertible (it Ø is not square), and so it is inverted in some *generalized* (averaged) sense.

In particular, tomography problems are о. typically overdetermined (contain many more ray paths then grid model (This is used blocks), and the *Least Squares* in the *Generalized Inverse* works well:

multiply by transposed **L**^T:

 $L^T d^{observed} = L^T L m$ *,*

famous GLI method for refraction statics)

.

hence:

 m $=$ $\left($ L^T L $\right)^{-1}$ L^T d observed

inverse" matrix

Least Squares Inverse

Note that the solution is a linear ٠ combination of data values:

> m = ($L^T L$) $^{-1} L^T d^{observed}$ = L_g^- −1 *d observed* . \Box The "generalized"

The reason for its name of "Least . Squares" is in its minimizing the mean square of data misfits:

 $Misfit$ $(m) = (d^{observed} – Lm)^{T}$ $(d^{observed} – Lm)$.

Exercise: show this!

Damped Least Squares

- Sometimes the matrix **L** ^T**L** is singular 0 and its inverse is unstable.
	- This happens, e.g., when some cells are not crossed by any rays, or there are groups of cells traversed by the same rays only.
- In such cases, the inversion can be *regularized* by adding a small positive diagonal term to L^TL:

$$
m = (L^T L + \varepsilon I)^{-1} L^T d^{observed}.
$$

- This is called the *Damped Least Squares* solution.
- \bullet ε is chosen such that stability is achieved and the non-zero contributions in **L** ^T**L** are affected only slightly.

Resolution matrix

- Assessment of the *quality of* ٥ *inversion method* is often done by using the *Resolution Matrix*
	- Regardless of the selected form of the inverse, we can:
		- 1)Perturb 1 parameter (grid node) of the model;
		- 2)Perform forward modeling (generate synthetic data);

3)Perform the inverse.

• When repeated for each parameter, this process results in a resolution matrix:

$$
R = L_{g}^{-1} L
$$

- Note that **R** *does not* depend on the . data values but depends on sampling
	- ◆ Crossing rays are VERY important in tomography.

Source Location Problem

- When using a natural (yet impulsive) ۰ source, its location can also be determined by a similar approach.
	- This method is used for location of earthquakes worldwide...
	- for monitoring creep of mine walls (Potash Corp)
	- monitoring reservoirs while doing injection (Weyburn)

To solve this problem, we: ٥

- Start from some reasonable approximation for source coordinates and solve the velocity tomography problem.
- ◆ Add the coordinates of the source to model vector:

2m.
$$
s_{1} = 1/V_{1}
$$

\n1e
\n**inates of**
\n**urce to**
\n**vector:**
\n**m** =
$$
\begin{bmatrix} s_{1} = 1/V_{1} \\ s_{2} = 1/V_{2} \\ \vdots \\ s_{N} = 1/V_{N} \\ x_{source} \\ z_{source} \end{bmatrix}
$$

.

Source Location (cont.)

Include into the matrix **L** time delays associated with shifting the source by δx or δz :

- Now, when solved, the Generalized Inverse will yield the corrections to the location $(\delta x,$ d*z*).
- This process is often iterated: with the new source location, velocities are recomputed, and sources relocated again, etc.