
13 DERIVATIVES OF POTENTIAL FIELDS GEOL 481

DERIVATIVES OF POTENTIAL FIELDS

Potential fields satisfy

∂2∆g

∂x2
+

∂2∆g

∂y2
+

∂2∆g

∂z2
= 0

and of course we could substitute the mag total field or vertical field

for ∆g

The second vertical derivative is then

∂2∆g

∂z2
= −(

∂2∆g

∂x2
+

∂2∆g

∂y2
)

The second vertical derivative is used as a high pass filter to enhance

short horizontal scale features (short wavelength) at the expense of

long horizontal scale features (long wavelength).
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SECOND VERTICAL DERIVATIVE CONVOLUTION OPERATOR

Suppose we take three elements of a row or column of a gridded

data set.

gi,k−1 gj,k gj,k+1

Then, we can estimate the first horizontal derivative at two points

∂g

∂x
|j,k−1/2 ≈gj,k − gj,k−1

1
∂g

∂x
|j,k+1/2 ≈

gj,k − gj,k+1

1

where j, k ± 1/2 means the point half way between k and k ± 1.

An estimate of the second horizontal derivative is then

∂2g

∂x2
≈

∂g
∂x |j,k−1/2 − ∂g

∂x |j,k−1/2

1
≈gj,k+1 − gj,k − gj,k + gj,k−1

≈gj,k+1 + gjk−1 − 2gj, k
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Here we are differentiating along the column index, so in the x di-

rection, we could do the same thing in the y direction by working

on the first index. So, a three element convolution filter to calculate

the second vertical derivative would be.




0 −1 0
−1 4 −1
0 −1 0



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SECOND VERTICAL DERIVATIVE (FOURIER)

∆g(x, y, 0) =
∫ ∫

G(ωx, ωy)e+i(ωxx+ωyy)dωxdωy

∂2∆g(x, y, 0)
∂x2

= −
∫ ∫

ω2
xG(ωx, ωy)e+i(ωxx+ωyy)dωxdωy

∂2∆g(x, y, 0)
∂y2

= −
∫ ∫

ω2
yG(ωx, ωy)e+i(ωxx+ωyy)dωxdωy

∂2∆g(x, y, 0)
∂z2

=
∫ ∫

(ω2
x + ω2

y)G(ωx, ωy)e+i(ωxx+ωyy)dωxdωy

Once we have G(ωx, ωy ie we have done a Fourier transform for

any reason, we can easily calculate the second vertical derivative in

wavenumber space and then inverse transform.
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The preceding should make it clear that the gain of a second vertical

derivative operator increases as the square of frequency.

So we could potentially have a serious problem with Gibbs’ phe-

nomenon at high frequencies. To avoid this, a high cut (high fre-

quencies are attenuated) operator could be applied.

2ndV.D. = V ∗ S

The resulting filter would have a gain that initially increases as the

square of frequency, but at high frequencies the high cut filter limits

the gain.

Or in the Fourier context, a low pass or high cut filter could be

applied. Remember that it does not matter which order these oper-

ations are done in. We could apply the high cut filter first and then

the second vertical derivative, or the other way around.
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FIRST VERTICAL DERIVATIVE (FOURIER)

The gravity anomaly at depth z is

∆g(x, y, z) =
∫ ∫

Go(ωx, ωy)e(ω2
x+ω2

y)1/2z+i(ωxx+ωyy)dωxdωy

and we can differentiate this wrt z

∂∆g(x, y, z)
z

=
∫ ∫

|z|
z

(ω2
x+ω2

y)1/2Go(ωx, ωy)e(ω2
x+ω2

y)1/2z+i(ωxx+ωyy)dωxdωy

and at z=0, but in the limit from below

∂∆g(x, y, 0)
z

=
∫ ∫

|z|
z

(ω2
x + ω2

y)
1/2(ω2

x + ω2
y)

× Go(ωx, ωy)e(ω2
x+ω2

y)1/2z+i(ωxx+ωyy)dωxdωy

When we did continuation, our result worked from level surface to

level surface. We could think about first and second derivatives a

s a way to go from a curved surface to a level surface or level to

curved or curved to curved.

Drape to level?

Level to drape?

morozov
Typewritten Text
See comments file (note a couple typos in formulas below)
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THE ANALYTIC SIGNAL

The analytic signal is a relatively new derivative tool for mag.

AS = |∂T

∂x
î +

∂T

∂y
ĵ +

∂T

∂z
k̂|

it can either be measured directly, which has the major advantage

that a base station is not required, or it can be computed form total

field measurements.

• TENDS TO SHOW A SINGLE PEAK CENTERED OVER SOURCE

• GRADIENT MEASURED OVER SMALL DISTANCES IS NOISY

• LONG λ’s HAVE LOW S/N

• NOT MUCH SOFTWARE FOR INTERPRETATION
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THE GRADIENT TENSOR




∂Tx

∂x
∂Tx

∂y
∂Tx

∂z
∂Ty

∂x
∂Ty

∂y
∂Ty

∂z
∂Tz

∂x
∂Tz

∂y
∂Tz

∂z




The gradient tensor is similar to analytic signal (centered over

source) but a direct measurement requires at least four magnetome-

ters.
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EULER DECONVOLUTION

this is Euler’s homogeneous equation of degree N

(x − xo)
∂T

∂x
+ (y − yo)

∂T

∂y
+ (z − zo)

∂T

∂x
= −N(B − T )

Here, xo, yo, zo is the source location, B is a regional field and N is a

structural index, much like the structural indeces we used in depth

estimates.

There are 5 unknowns xo, yo, zo, N, B. If we guess N then there

are four unknowns in a linear equation, so we need at least four

equations.




