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LEAST SQUARES FITTING
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HOW TO DETERMINE THE 
UNDERLYING MODEL THAT 
GENERATED THE OBSERVED 
DATA PLUS NOISE? 

IN THIS CASE WE ASSUME THE
UNDERLYING MODEL IS A 
STRAIGHT LINE AND WE WANT TO
FIND THE BEST VALUES FOR THE 
INTERCEPT AND SLOPE 
CONSISTENT WITH THE
OBSERVED DATA.  
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MOST OFTEN WE CAN CONTROL
THE X MEASUREMENTS MUCH
BETTER THAN THE Y. SO THE 
X UNCERTAINTY IS NEGLIGIBLE 
COMPARED TO Y.  

ALSO MOST OFTEN THE CASE IS 
THAT THE ERRORS ARE UNIFORM. 
THIS MEANS THAT THE
ERRORBARS ARE THE SAME ON 
EACH MEASUREMENT.
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In the restricted case that the errors in x are negligible, the errors in y are uniform

(Gaussian) The best fit curve has

N∑

i=0

ε2i = minimum

where εi are now the offset of the observed data from the data predicted by the best

model. The offsets, or data misfits are not the same as the errors of observation,

except if the model is correct.

Suppose we want to least squares fit a straight line to some data

y = ax + b

then we want to know what choices for a and b result in the smallest
∑N

i=0 ε2i ? Or,

more generally

f(x) = a1f1(x) + a2F2(x) + · · ·aMfM (x)

so there are M parameters and M known functions fj(x). Accounting for the fact

there are N observations

f(xi) = a1f1(xi) + a2F2(xi) + · · ·aMfM (xi) + εi i = 1 · · ·N
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This is really a set of equations




f1(x1) f2(x1) · · · fM (x1)
f1(x2) f2(x2) · · · fM (x2)
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

fi(xN ) f2(xN ) · · · fM (xN )







a1

a2

·
aM


 =




f(x1)
f(x2)

·
·
·

f(xN )




+




ε1
ε2
·
·
·

εN




The big matrix is M columns by N rows and usually there are more observations

than parameters so N > M .

A shorthand for the above is

fij · aj = di + εi

or better

F ·A = D + E

where E is the misfit of the model to the data, or the error vector
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We would like to solve this equation for A such that

E =
N∑

i

ε2i is a minimum

To find the minimum of a function we differentiate wrt a variable and set that

equal to zero.
∂E

∂ak
= 0 k = 1, 2 · · ·M

or
N∑

i

2εi
∂εi

ak
= 0 k = 1 · · ·M

but

ε i = -
m∑

j−1

fij aj + di

so

-∂εi

∂ak
=

m∑

j=1

fij
∂aj

∂ak
− ∂di

ak

= fik because
∂aj

∂ak
= δjk &

∂di

∂ak
= 0

so the condition for a minimum becomes

N∑

i=1

εifik = 0 k = 1 · · ·M
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or, substituting for ε

εi = (fijaj − di)

or

(F · A − D) · F =0

F · A · F =D · F

multiplying through by the transpose of F

FT F · A · F =FT · D · F

A · F =(FT F )−1FT D · F

and so

A = (FT F )−1FT D

is the choice for A that minimizes the sum of squares of the data misfits.

matlab has a shorthand for the above

A = (FT F )−1FT D = F\D

as long as the dimensions are consistent, matlab will interpret the backslash in

this way.

The data as predicted by the best model are then

dpre = Am
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Going back to the original figure, the best line is the bold line. Some other possi-

bilities, that fit the observed data but not with as small a misfit as the best model

are also shown.
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Now we can calculate the misfit

E =F · A − D

=(F (FT F )−1FT − I) · D
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If the correct model has been chosen, that is, it accounts for all the variance in the

data except that due to the errors of observation, then the data misfit will be the

same as the errors of observation. Since errors of observation are often Gaussian,

(Gauss invented least squares) least squares fitting implicitly assumes that the

misfit is Gaussian, although the method will still produce reasonable results even

if the misfit is not Gaussian.

This is important in the potential fields context because when we separate regional

and residual by least squares we are assuming that the regional is the model and

the misfit is the residual. Does it make any sense at all to expect that the residual

will be Gaussian?
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EXAMPLE 1

Fit a (1D) parabola to data

a1 + a2x + a3x
2 = f

and so if we had data 


x =
0
1
2
3
4







d =
1
6
17
32
58




the matrix expression would be




1 0 0
1 1 1
1 2 4
1 3 9
1 4 16







a1

a2

a3


 =




1
6
17
32
58




+




ε1
ε2
ε3
ε4
ε5




and




a1

a2

a3


 = (FT F )−1FT




1
6
17
32
58




=



0.024
0.078
0.274



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EXAMPLE 2

Fitting a signal in noise




sinωo t1 cosωo t1
sinωo cosωo t2

· ·
· ·

sinωo tN cosωo tN




(
a
b

)
=




d(t1)
d(t2)
·
·

d(tN )




+




ε




and so (
a
b

)
= (FT F )−1FT d

and the amplitude is

amp = (a2 + b2)1/2

and the phase of the sine wave is

φ = Tan−1(b/a)

Note we could construct an entire Fourier transform in this way. The data would

not have to be equispaced as with the DFT and FFT.
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EXAMPLE 3

FITTING A PLANE IN TWO DIMENSIONS

This is the simplest regional residual separation. The equation of a plane is

ax + by + c = PLANE(x, y)

so the set up is




x1 y1 1
x2 y2 1
· ·

xN yN 1







a
b
c


 =




d1

d2

·
dN


 +




ε1
ε2
·

εN




and this can be generalized to any polynomial surface.

In all these examples, the data were a linear function of the parameters. Suppose

in the sinusoid fitting problem the frequency was unknown and we wanted to least

squares fit for it. The data depend non-linearly on the frequency so we could not

solve this in the above way. Non-linear least squares requires special tools that I

don’t have time to discuss here.

The equation for the magnetic anomaly of even the simplest structure - a dipole

- is non-linear in the parameters as is the gravity anomaly of a sill, so there are

many problems we will not be able to handle with linear least squares.
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CONVOLUTION

Many of the operations we do with Fourier transforms can also be done wit con-

volution filters. A FILTER operates on a data st by CONVOLVING the elements

of the filter with the elements of the data.

Suppose you had a data set

that consisted of a single

spike at time T.

and a filter that responds to a spike by delaying it by 2∆T the issuing a single

spike, waiting a further 2∆T issuing a second spike with half the amplitude of the

first etc. This is like listening at a repeated echo between two cliffs. The filter

coefficients are the amplitudes in response to a spike and the filter delays are the

waits between spikes. You actually only know the filter coefficients, the delay is in

arbitrary units that only become specific when the filter is applied to data sampled

at some interval.

Suppose we had a filter whose coefficients are f1 f2 etc, and the data is just one

spike of amplitude a.

=afo af1 af2 · · ·afn output

=To To + ∆T To + 2∆T · · ·To + n∆T time
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Reverberations in a water layer (downward going pulses only) could be described

by a filter whose coefficients are

1 − e + e2 − e3 · · ·

How to handle an input that is not a single spike? If data are sampled at discrete

and equally space times then each sample is a spike and we can convolve each spike

with the filter accounting for delays.

For example, suppose we had data

1 1 1/2 2

at time To To + ∆T , To + 2∆T and filter coefficients

1 1/2 1/4

The response to the first data sample is

1 1/2 1/4

at times To To + ∆T , To + 2∆T (the amplitude of the first data point is 1 and

there is no delay for the first filter coefficient.
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The response to the second data sample is

11/2 3/4 3/8

starting at To + ∆T and incrementing by ∆T .

The response to the third data sample is

2 1 1/2

starting at To + 2∆T . Adding all these up with allowance of delays, we have

1 2 3 1 3/8 1/2

starting at To of course.

Here is what we did

reflected order d2 d1 do

fo f1 f2

So the response is fodo at To

The response at To + δT is

reflected order d2 d1 do

fo f1 f2

So the response is fod1 + f1do
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The response at To + 2∆T is

reflected order d2 d1 do

fo f1 f2

So the response is fod2 + f1d1 + f2do

The response at To + 3∆T is

reflected order d2 d1 do

fo f1 f2

So the response is f1d2 + f2d1

The response at To + 4∆T is

reflected order d2 d1 do

fo f1 f2

So the response is f2d2

and response at To + 5∆T is

reflected order d2 d1 do

fo f1 f2

that is, there is no overlap, so no response.
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A more concise notation is to write y = f ∗ d the output of f convolved with d.

yt =
m∑

s=0

fsdt−s

Where the minus sign reflects the reversal we did above.

or, for continuous data

f ∗ g =
∫ ∞

−∞
f(x)g(t − x)dx

There are some useful properties of convolutions

f ∗ g =g ∗ f cummatative

f ∗ (g + h) =f ∗ g + f ∗ h distributive

f ∗ (g ∗ h) =(f ∗ g) ∗ h associative

CONVOLUTION IN THE OBSERVATION DOMAIN

IS EQUIVALENT TO MULTIPLICATION IN THE FREQUENCY DOMAIN

AND

CONVOLUTION IN THE FREQUENCY DOMAIN IS EQUIVALENT TO MUL-

TIPLICATION IN THE OBSERVATION DOMAIN

As a result of the convolution theorem we know that observing for a finite amount

of time broadens the spectrum of a peak in the frequency domain.

Derivatives of convolutions are important
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CONVOLUTIONS IN 2D

h(x, y) =
∫ ∫

f(s, t)g(x − s, y − t)dsdt

or

hn,m =
k+r∑

0

l+s∑

0

fijgn−i,m−j

A 2-D filter might look like




f−1 1 f 0 1 f 1 1

f−1 0 f 0 0 f 1 0

f−1−1 f 0−1 f 1−1







