GEOLA483.3

Geometrical

Seismics
Refraction

e Refraction paths
* Head waves
* Diving waves
o Effects of vertical velocity gradients

*Reading:
- Sheriff and Geldart, Chapter 4.2 - 4.3.
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Snell's Law of
Refraction

@ When waves (rays) penetrate a medium with
different velocity, they refract, i.e. bend
toward or away from the normal to the
velocity boundary.

@ The Snell's Law of refraction relates the
angles of incidence and emergence of waves

refracted on a velocity contrast:

sini_sinr _sinf}; _sinf3,
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@ The constant p 1s
called ray
parameter

Vo, Vi, P2

@ Note that Ve > Vs
refraction angles
depend on the
velocities alone!
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Refraction in a stack of
horizontal layers

Ray ;
parameter, p, !

uniquely
specifies the
entire ray.

It does not hfI l\is v,
depend on I ’
!

layer h
h

thicknesses or
velocities.

Travel times sl
and distances
accumulate For any layer:  sini, = pV,
along the ray
to vyield the | =
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Critical Angle of
Refraction

Consider a faster medium overlain with a lower-
velocity layer (this is a typical case).

Critical angle of incidence in the slower layer is
such that the refracted waves (rays) travel
horizontally in the faster layer (sin r = 1)

The critical angles thus are:

. 1 VP

rF — - 1
Il =8In  — for P-waves,

Ve,

g SR | VS
[~ =8I0 — for S-waves.

e Critical ray parameter: _criticai_ 1
it

refractor

@ If the incident wave strikes the interface at an
angle exceeding the critical angle, no refracted or
head wave is generated.

» Note that /_ should better be viewed as a property
of the interface, not of a particular ray.
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Head wave

@ At critical incidence in the upper medium, a head
wave is generated in the lower one.

@ Although head waves carry very little energy, they
are useful approximation for interpreting seismic

wave propagation in the presence of strong velocity
contrasts.

@ Head waves are characterized by planar wavefronts
inclined at the critical angle in respect to the velocity
boundary. Their travel-time curves are straight lines:
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Here, t s the intercept time, and Vapp is the

apparent velocity.
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Relation between
reflection- and
refraction travel-times
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Critical and Cross-over
distances vs. velocity

contrast
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®  Note that the distances are proportional to the depth
and decrease with increasing velocity contrast across
the interface
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Travel times
(Horizontal refractor)

@ Direct wave:
X
t(x)==—.
(#)=37
@ Head wave:

13
P

this 1s also sin /
sini = pV, cosi =+/1—(pV, ¥ f

=2 i +p(x—2hltani): £ (l—lesinl')erx—%coerpx
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f, = 7 iy h’l /1 (pV < |intercept time, 7.
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Travel times
(Multiple horizontal layers)

® pis the same
critical ray
parameter
for the bottom
(refracting)
interface;

N to IS
accumulating

across the
layers:

For any layer:  sini, = pV,
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Travel times
(Dipping refractor)
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would change to '-' for up-dip shooting




GEOLA483.3

Hidden-Layer Problem

®m  Velocity contrasts may not manifest

themselves in refraction (first-arrival) travel
times. Three typical cases:

Low-velocity layers;
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Reversed travel times

®  One needs reversed recording (in opposite
directions) for resolution of dips.

m The reciprocal times, T, must be the the same
for reversed shots.

® Dipping refractor is indicated by:

+ Different apparent velocities (=1/p, TTC slopes)
in the two directions;

- determine V, and a (refractor velocity and dip).

+ Different intercept times.
- determine h_and h_(interface depths).

T

2z, cosi,

2z, cosi, |-
Vl
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Determination of
refractor velocity and dip

m Apparent velocity is Vapp = 1/p, where p

is the ray parameter (i.e., slope of the
travel-time curve).

* Apparent velocities are measured directly
from the observed TTCs;

» Vapp =V ... only for horizontal layering.
* For a dipping refractor:
R | Vl .
Down dip: Vd_sin(ic-I—O() (slower than V);
> Up-dip: HL v, (faster).

“ sin(i,—x)

® From the two reversed apparent
velocities, I and a are determined:

v
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V., 5 2 v, Vv,
i —x=sin ' 1! a:—(sin_lﬁ—sin_lﬂ).
¢ V 2 V, V.,
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Approximation of
small refractor dip

®m If refractor dip is small:

Vl . . .. .

—=sin(i +«)~sini +xcosi
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B Thus, the slowness of the refractor is
approximately the mean of the up-dip
and down-dip apparent slownesses.
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Diving waves

® Consider velocity gradually increasing
with depth: V(z).

® Rays will bend upward at any point
and eventually will return to the
surface

® Such waves are called diving waves.

® An implicit solution for the travel-time
curve (x,t) can be obtained from the
multiple-layer refraction formulas:

LT eV (z)de
il 2£¢1—<pv<z>>2
((p)=2] - hd

where h_'is the depth at which pV(h_ )=1.
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Diving waves

Linear increase of velocity with depth

m Consider: V() =V +az.
a is generally between 0.3-1.3 1/s.
® Hence, denoting u=pV=sin j:

representation

of the (x,z,7) [
through u / 1 u
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Diving waves

Layers with low velocities and high velocity
gradients create complex travel-time curves

Triplication

This is how
a “reflection”
develops from
diving waves
by steepening
velocity gradient

[ Gap in the TTC

Triplication in the TTC

(¢)
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