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Ray theory

Ray-tracing
Travel times
Amplitudes

WKBJ approximation
Eikonal equation
Practical travel-time modelling 
methods

Reading:
➢ Shearer,  4 and 6
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Rays and wavefronts

Rays and wavefronts only represent 
attributes of “the travel time field” 
If t(x) is the time at which certain 
wave reaches point x, then: 

Wavefronts are surfaces t(x) = 
const
Rays are flow lines of the 
gradient of t(x) 

Ray theory corresponds to the high-
frequency limit: 

wavefronts and rays are smooth 
but bend sharply on 
discontinuities
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Snell's law

The travel time field and 
consequently wavefronts are 
continuous across a velocity contrast
Propagation velocities (and 
slownesses) along the boundary are 
the same:

p=s1sin1=s2 sin2

Slowness = 1/V
1
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WKBJ 
approximation

Originates from Liouville and Green 
(~1837)
Named after Wentzel, Kramers, 
Brillouin, and Jeffreys (~1923-26)
Gives approximate solutions of the 
differential equation with small 
parameter ∈ <<  1 in the leading 
derivative:

The solution is sought in the form:

where δ << 1 as well.

 d n y
d xnan−1

d n−1 y
d xn−1 ...a1
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d x

a0 y=0

y x=exp[ 1
∑k=0

∞

k S k x]
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WKBJ approximation
of wave equation

Consider the wave equation for a 
harmonic wave (Helmholtz equation) 
in variable wave speed c(x):

      that is:

and c
0
 is some characteristic value 

of c(x) 
Let's look for a solution like this:   
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Denote this ∈2
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WKBJ approximation
of wave equation

The wave equation becomes:

To the leading order, with δ → 0:

Thus, δ is proportional to ∈, and we 
can take:

and the solution becomes:  

2[ 1
2 ∑k=0

∞

k S ' k x
2


1
∑k=0

∞

k S ' ' k x]=−c0

c 
2

1
2 c0

 
2

S ' 0
2=−c0

c 
2

S0x=±i∫ c0 dx '
c x ' 

const=
c0


,

u x≈A exp[±i∫
x0

x dx '
c x '  ]

This is the
“eikonal equation”

Ray travel time from x
0
 to x
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WKBJ approximation
of wave equation (end)

The above solution: 

only gives the ray-theoretical 
phase  of the wave 

It is equivalent to the solution of 
the eikonal equation

The amplitude can be estimated by 
the second-order WKBJ 
approximation

This is called the transport 
equation   

u x≈A exp[±i∫
x0

x dx '
c x '  ]
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Eikonal equation

From German Eikonal, which comes 
from Greek εικων, image (that is, 
“icon”)
Provides the link between the wave 
and geometrical optics (and 
acoustics)
If t(x) is the time at which certain 
wave reaches point x, then in the 
geometrical (high-frequency) limit, 
it must satisfy:

This is the eikonal equation for 
seismic travel times

Broadly used in fast 2-D and 3-D 
wavefront- and ray-tracing 
algorithms

∣∇ t x ∣= 1
V x 
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Travel-time 
modelling methods
 Ray tracing (shooting)

 τ-p methods (in layered 
structures)

 Eikonal-equation based 
wavefront propagation

 Ray bending
 Shortest-time ray 

methods

We will not 
discuss them here

See Shearer
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Ray shooting
(A simple approach in 2D)

 Velocity model is split into 
triangular cells

 In each cell, the velocity has a 
constant gradient

 In a constant velocity gradient, 
the ray is always a circular arc 
(we will see this later)

 Starting from the source the  ray is 
constructed by combining such arcs

 Accurate, but complex method  
 Computationally intensive when many 

rays are needed
 May have problems in complex 

structures
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Eikonal first-arrival 
time calculation
Initialize the near-source times
At each iteration try timing each node by 
using the adjacent nodes

Use waves from 
point, linear, 
and planar 
Huygens sources
Select the 
earliest time 

Node being
 timed now

Grid nodes 
already timed

2D

3D
Podvin and Leconte, 1991
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Example
First-arrival travel times 
in 3D

Eikonal 
travel-time 
calculation
Rays to 
every point 
can be 
obtained by 
tracing t(x) 
gradients 
back to the 
source

Source

Source

Low-velocity
 cube
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Ray bending

Directly employing Fermat 
principle
Connecting the source and 
receiver by a shortest-time ray

Accurate and stable
Works only for selected source-
receiver pairs
Computationally intensive
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Shortest-path 
ray tracing
A suitable grid of possible ray paths is 
created

Including reasonable dips and structures

Starting from the source, shortest-time 
paths are identified
Fast and stable method

Good for quick general assessment of time 
field 
Can be followed by ray bending for accuracy 

Source
All paths considered Shortest paths

Moser, 1991
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Example:
Shortest-time paths 

Uniform velocity

Velocity 
increasing 
with depth

Moser, 1991

Source

Note the discontinuities 
in the travel-time field
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Ray-based 
amplitudes
Amplitudes can be estimated from ray 
flux tubes

For example, the Geometrical spreading 
is often modelled in this way

If energy flux remains constant:

amplitude 
varies as:  

A2

A1
= dS 1

dS 2  1 c1

2 c2

E flux=c 2 A22

“Geometrical 
spreading”

Ratio of
impedances

Kinetic 
energy density

A
1

A
2
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