GEOLA483.3

Ray theory

Ray-tracing
* Travel times
* Amplitudes

WKBJ approximation
Eikonal equation

Practical travel-time modelling
methods

*» Reading:
- Shearer, 4 and 6
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Rays and wavefronts

» Rays and wavefronts only represent
attributes of “the travel time field”

* If t(x) is the time at which certain
wave reaches point x, then:

*+ Wavefronts are surfaces t(x) =
const

* Rays are flow lines of the
gradient of t(x)

* Ray theory corresponds to the high-
frequency limit:
+ wavefronts and rays are smooth

but bend sharply on
discontinuities
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Snell's law

® The travel time field and
consequently wavefronts are
continuous across a velocity contrast

* Propagation velocities (and

slownesses) along the boundary are
the same:

p=s,81nf =s,s1n0,

Slowness = 1/ V1 J
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WKBJ
approximation

* Originates from Liouville and Green
(~1837)

» Named after Wentzel, Kramers,
Brillouin, and Jeffreys (~1923-26)

* Gives approximate solutions of the
differential equation with small
parameter [/<< 1 in the leading
derivative:

n—1
il y+a ld nyl
dx d x

Hi ] jy +a,y=0
X

* The solution is sought in the form:
exp[ 25 S }

where d << 1 as well.
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WKBJ approximation
of wave equation

*» Consider the wave equation for a
harmonic wave (Helmholtz equation)
in variable wave speed c(x):
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and C, IS some characteristic value
of c(x)
@ Let's look for a solution like this:

u(x)=exp| 5 3 645, (4
L k:O -
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WKBJ approximation
of wave equation

» The wave equation becomes:
-1 00 2 1 o0 l C ’
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> To the leading order, with 6 - O:
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“etkonal equation” S 2\ w C

* Thus, dis proportional to [J, and we
can take:

C c,dx’
5=EO,SO(X)=iif 4 const

c(x')

and the solution becomes:

dx ' -
)

u(x)~Aexp iiwf

«

Ray travel time fromx tox -
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WKBJ approximation
of wave equation (end)

* The above solution:
dx

c(x’)_

u(x)~Aexp iiwf

only gives the ray-theoretical
phase of the wave

+ It is equivalent to the solution of
the eikonal equation

* The amplitude can be estimated by
the second-order WKBJ
approximation

* This is called the transport
equation
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Eikonal equation

* From German Eikonal, which comes
from Greek eikav, image (that is,
\\iconll)

* Provides the link between the wave

and geometrical optics (and
acoustics)

* If t(x) is the time at which certain
wave reaches point x, then in the
geometrical (high-frequency) limit,
it must satisfy:

> 1
Vix)|=——

* This is the eikonal equation for
seismic travel times

* Broadly used in fast 2-D and 3-D
wavefront- and ray-tracing
algorithms
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Travel-time
modelling methods

® Ray tracing (shooting)

= 7-p methods (in layered |
structures) hal We will not
~———discuss them here

B Fikonal-equation based  See Shearer

wavefront propagation
® Ray bending

® Shortest-time ray
methods
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Ray shooting

(A simple approach in 2D)

® Velocity model is split into
triangular cells

® In each cell, the velocity has a
constant gradient

B Tn a constant velocity gradient,
the ray is always a circular arc
(we will see this later)

® Starting from the source the ray is
constructed by combining such arcs

®= Accurate, but complex method

= Computationally intensive when many
rays are needed

= May have problems in complex
structures
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Eikonal first-arrival
time calculation

@ Initialize the near-source times

® At each iteration try timing each node by
using the adjacent nodes

* Use waves from
point, linear,
and planar
Huygens sources

+ Select the
earliest time

Grid nodes
already timed

Node being
timed now

3D

Podvin and Leconte, 1991
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Example
First-arrival travel times
in 3D

Source x

Eikonal
travel-time
calculation

Rays to
every point
can be
obtained by
tracing t(x)
gradients
back to the
source

Low-velocity
cube
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Ray bending

* Directly employing Fermat
principle

* Connecting the source and
receiver by a shortest-time ray
* Accurate and stable

* Works only for selected source-
receiver pairs

* Computationally intensive
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Shortest-path
ray tracing

@ A suitable grid of possible ray paths is
created

#* Including reasonable dips and structures

@ Starting from the source, shortest-time
paths are identified

@ Fast and stable method

® Good for quick general assessment of time
field

® Can be followed by ray bending for accuracy

s2ey = "'f[/‘;/"/’"l

\
1 I
' I

S ]
1 [
‘ s
! i
'

Source & &

(I Laging—" AP, -yl - = T o ol T - S~

____________

Moser, 1991




GEOLA483.3

Example:
Shortest-time paths

Velocity

increasing
___Uniform velocity with depth

/ Moser, 1991

Note the discontinuities
in the travel-time field
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Ray-based
amplitudes

* Amplitudes can be estimated from ray
flux tubes

* For example, the Geometrical spreading
is often modelled in this way

@ If energy flux remains constant:

) Kinetic
D

energy density

Eﬂm:c(gzélzw2

amplitude
varies as:

é_\/dsl\/plcl
4, VdS,\pyc,
A I Ratio of

| “Geometrical impedances
spreading”
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