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Geol 483.3

Lab Project #1: Cross-well travel-time modelling and tomography

This project consists of two parts. First, you will set up a simplified synthetic cross-well model
and use Matlab to compute  the first-arrival  travel  times in  it.  After  that,  you will  use these
synthetic  travel  times  to  invert  for  seismic  velocities  in  a  procedure  called  seismic  velocity
tomography. 

Cross-well model (30% of the mark)

In cross-well  imaging,  a  string  of geophones  is  mounted  in  one well,  and a  high-frequency
(ultrasonic) source is lowered into another. Source-receiver travel times are recorded for each
position of the source and are utilized to invert for the velocities between the wells.

Consider a simplified experiment geometry shown below. Two 200-m wells are located 200 m
apart.  The velocity model is gridded into a grid of 20´20-m blocks, with 11 sources and 11
receivers at 0-, 20-, 40-, ..., 200-m depths.

The velocity within each square cell is constant, and all rays are assumed straight, as shown in
the plot above.  Model velocities need to be provided in an array, and you need to compute 121
travel times from each source to each receiver. To achieve this, you will need:

1) Write  a  Matlab  subroutine  to  initialize the velocity  array.  Note that  velocities  need to be
stored in a ONE-dimensional array, so some numbering convention (e.g., scanning the grid) is
advisable. First, set the velocities equal 2 m/ms everywhere (use meters to measure distances
and milliseconds for times).
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2) Write a Matlab function to return, for given source and receiver, the lengths of the segments

of the corresponding ray (Li in the plot above) in each of the model cells. For most cells (not
crossed by the ray) these lengths will be 0. In cases when rays travel exactly along the edges
of the cells, each of the adjoining cells should be assigned a half of the segment length.  

3) Using the lengths of ray segments, compute the total ray travel time for each ray.  Plot the
travel  times  (as  functions  of  receiver  depth)  for  source  positions  at  the  top,  middle,  and
bottom of the well.

Now apply a +10% velocity anomaly within the shaded area in the plot and repeat the steps
above. How are the times different? Why?

4) Save the resulting travel times. Again, for the inversion below, it is better to store all of the
resulting travel times in a single array of 121 values. You can put into the array, say, first all
times from the shot at depth 0, followed by all travel-times from shot at 20 m, and so on.  
• Create and save another travel-time dataset, for velocity anomaly shifted into the upper-

left corner of the model.

Tomography (40%):

Once you have all of your velocity model values in an array {Vi} and travel times in array{tj},
the inversion proceeds as follows. Given some velocity distribution, predicting  travel times are:

ti=∑
k

Lik pk , (1)

where k is the index of model cell, Lik is the ray path of  i-th ray in this cell, and pk = 1/Vk is its
“slowness”. In matrix form:

(
t1
t2
...
t121

)=(L)(
p1

p2

...
p100

) ,
where  L now is a 100´121 matrix. It is not directly invertible (there are more equations than
unknowns), yet it can be inverted in the Least Squares sense by multiplying the above equation
by the transposed matrix LT:

LT(
t 1
t 2
...
t121

)=LT L(
p1

p2

...
p100

),
which gives the solution: 
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(
p1

p2

...
p100

)=(LT L)−1 LT(
t 1
t 2
...
t 121

). (2)

This matrix equation is readily programmable in Matlab or Octave. For each of the two travel-
time datasets you created, do the following:

6) Implement matrix inversion (2),
7)  Plot horizontal and vertical velocity cross-sections across the anomaly and compare to the

actual (10-%) anomaly. 

8) Discuss the difference in the shapes of the anomalies recovered by the inversion in the two
cases. Which anomaly is recovered better, at the center or corner of the model? What could be
the reason for this?

9) Use Matlab to plot the resulting 2-D velocity distributions in (X,Z) grey-shade plot similar to
the one above. 

10) Plot the diagonal of the resolution matrix in grey scale. Describe its appearance.
11) Plot (again in grey scale) the middle row (the one corresponding to one of the shaded cells in

the plot above) of the resolution matrix. 

Checkerboard resolution test (30%):

Calculation of the resolution matrix above is often impossible or impractical. For example, such
would  be the case if  we iterated the inversion above in order  to  account  for  non-uniform
velocity and bending rays. N such cases, regardless of the way inversion is performed, resolution
of the model can be measured by conducting a so-called checkerboard test.

12) To  perform the test, create a synthetic model with positive and negative  10% anomalies
alternating in a checkerboard pattern. The anomalies can consist of a single cell  or be 2´2,
3´3, etc., cell blocks. 

13) Predict the travel times through the model using matrix equations (1).
14) Invert these synthetic travel times. The resulting inverted model should correspond to the

original checkerboard model. Are all the anomalies equally well recovered? Why? How does
this change if you increase the sizes of the input anomalies?   

Hand in:

Codes, report in a Word file, screen captures or PostScript/PDF plots, by email.
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