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Time and Spatial Series

-
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and Transforms

Z- and Fourier transforms
Gibbs' phenomenon
Transforms and linear algebra
Wavelet transforms

* Reading:
- Sheriff and Geldart, Chapter 15
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Z-Transform

@ Consider a digitized record of N
readings: U={u,, u,, U,, ..., Uy, ). How
can we represent this series differently?

® The Z transform simply associates with
this time series a polynomial:

Z(U): Uy +UZ+ U2 A UZ

* For example, a 3-sample record of
{1,2,5} is represented by a quadratic
polynomial:

1 +2z+ 52
@ In Z-domain, the all-important
operation of convolution of time series

becomes simple multiplication of their
Z-transforms:

U,*U, <> Z(U, 2 (U,)
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Fourier Transform

@ To describe a polynomial of order N-1, it is
sufficient to specify its values at N points in
the plane of “z”

@ The Discrete Fourier transform is obtained
by taking the Z-transform at N points
uniformly distributed around a unit circle on

the complex plane of z:
¥ 2Trk

Ze u(t ) k=0,1,2,...,.N—1

* Each term (k>0) in the sum above is a
periodic function (a combination of sin
and cos), with a period of N/k sampling
intervals:

e'“=cos(x)+isin(x)

® Thus, the Fourier transform expresses
the signal in terms of its frequency
components,

¢+ and also has the nice property of the Z-
transform regarding convolution
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Relation of Fourier
to Z-transform

@ z-points used to
construct the
Fourier
transform:

@ Aliasing: for a real-valued signal, the
values of FT at frequencies below and
above the Nyquist (orange and green
dots) are complex conjugate. Thus, only
a half of the frequency band describes
the process uniquely.

@ This ambiguity is the source of aliasing.

@ For this reason, frequencies above f,
should not be used.
@ Note: forward and inverse FT result in

a signal whose N samples are repeated
periodically in time.



d

@ Jnverse:
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Matrix form of
Fourier Transform
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Note that the Fourier transform can be
shown as a matrix operation:
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Resolution of
Fourier Transform

* Resolution matrix:
R.=F 'F

» If all N frequencies are used:
R.=1

» [If fewer than N frequencies are used
(Gibbs phenomenon):

R.#1
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Integral Fourier Transform

® For continuous time and frequency
(infinitesimal sampling interval and
infinite recording time), Fourier
transform reads:

> Forward: U(w)szdtu(t)eiwt.
21 5,
1 I —i wt
> Inverse: u(t):—fdwU(w)e .
T _»

®m [n practice, the bandwidth (and time)
is always limited, and so the actual
combination of the forward and inverse

transforms is rather:

u(t)= 2Tr f dw[fd‘ru T)e m]eiwt.
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Gibbs' phenomenon

®m At a discontinuity, application of the Fourier
forward and inverse transform (with a limited

bandwidth), results in ringing. [« the -9% “overshoot”

. at the top and the bottom

Step function is P VAN
reproduced with
~18% amplitude
distortion
and ripples
on each side

0.5

e — e e i R L L N
—dafy (4] PLIEN 4n/\ ¢— )\ is our
max

® This is important for constructing time and
frequency windows

@ Boxcar windows create ringing at their
edges.

@ “Hanning” (cosine) windows are often used
to reduce ringing:

1 Tt
HAt(t):E(l_COSE)'
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Spectra of Pulses
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@ For a pulse of width T s, its spectrum is about
1/T Hz in width:
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» Equal-amplitude (co)sinusoids from 0O to f
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Sample Fourier Transforms
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From Sheriff, Geldart, 1995

Compare the transforms within the boxes...
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Wavelet transforms

@ Lijke the inverse Fourier transform,

wavelet decomposition represents the
time-domain signal as a combination of
wavelets of some desired shapes:

u(t1) f1<t1> fz(tl) f3(t1) - a,
“(12) 1] f1(t2> fz(tz) f3(t2) - || a,
u(t3) f1<t3) fz(t3) f3(t3> .|| a;

Wavelet shapes iy Wavelet amplitudes A

@ JIdeally, wavelets should form a
complete orthonormal basis:

exp(...) functions

N-1

A | used in
Z fi (tk ) fj ( tk) T 51] Fourier transforms
k=0 satisfy this property

although this is not really necessary

@ Usually, functions f(t) represent time-
scaled and shifted versions of some
“wavelet” W(t)
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