Tomography and Location

- Forward and Inverse travel-time problems
- Seismic tomography
- Least Squares inverse
- Generalised Linear Inverse
- Iterative inverse
 - Back-projection method
- Resolution
- Statistical testing of results
- Location of seismic sources
- Data norms
- Reading: Shearer, 5.6-5.7

Seismic (velocity) tomography

Tomography

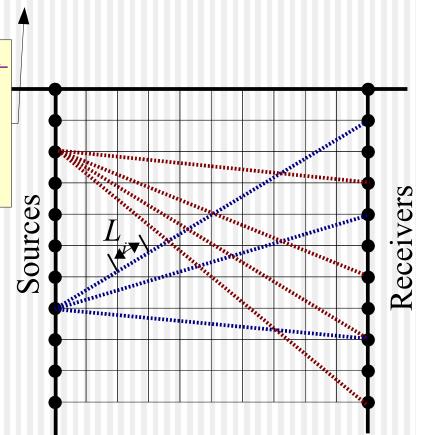
- The name derived from the Greek for "section drawing" - the idea is that the section appears almost automatically...
- Using multitude of source-receive pairs with rays crossing the area of interest.
- Looking for an unknown velocity structure.
- Depending on the type of recording used, it could be:
 - Transmission tomography (nearly straight rays between boreholes);
 - Reflection tomography (reflected rays; in this case, positions of the reflectors could be also found);
 - Diffraction tomography (using least-time travel paths according to Fermat rather than Snell's law; this is actually more a waveform inversion technique).

Cross-well tomography

- Consider the case of transmission "cross-well" tomography
 - This is the simplest case rays may be considered nearly straight, the data are abundant, and the coverage is relatively uniform.

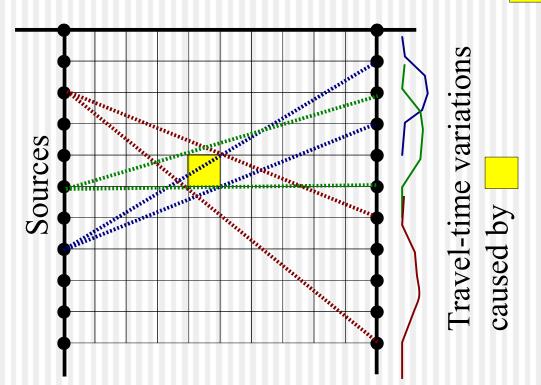
These are the three principal concerns in tomography:

- 1) linearity of the problem;
- 2) density of data coverage;
- 3) good azimuthal coverage.



Principle

- Velocity perturbations are considered as small
 - Therefore, rays are approximated as straight
- Each velocity cell leads to characteristic travel-time variations at the receivers ("impulse response")
 - These are inverted for velocity value at



Travel-time inversion as a *linear inverse* problem

- First, we parameterize the velocity model
 - Typically, the parameterization is a grid of constant-velocity blocks (sometimes splines are used instead of the blocks).
 - This parameterization gives us a model vector, m.

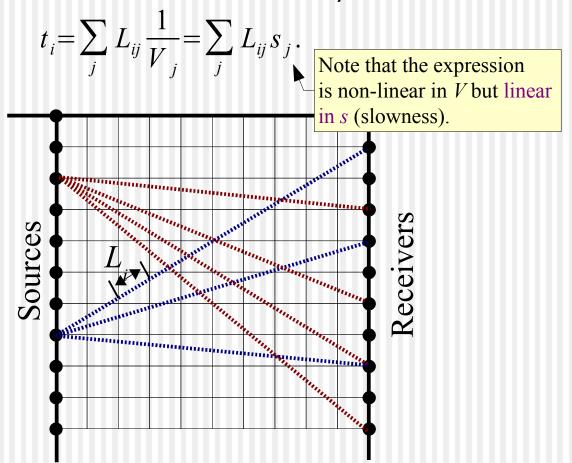
$$m = \begin{pmatrix} s_1 = 1/V_1 \\ s_2 = 1/V_2 \\ \dots \\ s_N = 1/V_N \end{pmatrix}.$$

 Second, we measure all travel times and arrange them into a data vector:

$$\boldsymbol{d}^{observed} = \begin{pmatrix} t_1 \\ t_2 \\ \dots \\ t_M \end{pmatrix}.$$

Forward model

- Third, we formulate the forward model to predict d from m. To achieve this, we need to trace rays through the model and measure the length of every ray's segment in each model block, L_{ii}.
 - The travel time for i-th ray is then:



Generalized Linear Inverse

• The model for travel times: $t_i = \sum_j L_{ij} s_j$ can be written in matrix form:

$$d = L m$$

- Now, we want to substitute d = d^{observed}
 and solve for unknown m. This is called
 the inverse problem.
- Typically, matrix L is not invertible (it is not square), and so it is inverted in some generalized (averaged) sense.
- Any solution in the linear form

$$m = L_g^{-1} d^{observed}$$

is called the generalized linear inverse.

• The problem is thus in finding a suitable form for \mathbf{L}_{a}^{-1} .

Projection into model space

- Often, tomography problems are typically <u>overdetermined</u> (contain many more ray paths than grid model blocks).
- In such cases, the following approach to constructing L_a⁻¹ works well:
 - → multiply by transposed L^T:

$$\boldsymbol{L}^{T} d^{observed} = \boldsymbol{L}^{T} \boldsymbol{L} \boldsymbol{m}$$
,

hence:

This operation "back-projects" the redundant data into "model space"

$$\boldsymbol{m} = (\boldsymbol{L}^T \boldsymbol{L})^{-1} \boldsymbol{L}^T \boldsymbol{d}^{observed}$$

This is the
"least-squares" solution
It is used
in the
well-known GLI3D
program
for refraction
statics

Least Squares Inverse

 Note that the solution is a linear combination of data values:

$$m = (L^T L)^{-1} L^T d^{observed} = L_g^{-1} d^{observed}.$$

$$L_g^{-1} = (L^T L)^{-1} L^T. - The "generalized inverse" matrix$$

 The reason for its name of "Least Squares" is in minimizing the mean square of data misfits:

$$Misfit(m) = (d^{observed} - Lm)^T (d^{observed} - Lm).$$

Exercise: show this!

Damped Least Squares

- Sometimes the matrix L^TL is singular and its inverse is unstable.
 - This happens, e.g., when some cells are not crossed by any rays, or there are groups of cells traversed by the same rays only.
- In such cases, the inversion can be regularized by adding a small positive diagonal term to L^TL:

$$\boldsymbol{m} = (\boldsymbol{L}^T \boldsymbol{L} + \varepsilon \boldsymbol{I})^{-1} \boldsymbol{L}^T \boldsymbol{d}^{observed}$$

- This is called the Damped Least Squares solution.
- ε is chosen such that stability is achieved and the non-zero contributions in L^TL are affected only slightly.

Weighted Least Squares

- Often, different types of data are included in d
 - For example, different travel times, t_i , may be measured with different uncertainties δt_i
- In such cases, it is useful to apply weights to the equations:

$$W d = W L m$$

where W is a diagonal weight matrix:

$$W = diag\left(\frac{1}{\delta t_1}, \frac{1}{\delta t_2}, \frac{1}{\delta t_3}, \dots\right)$$

Weighted Least Squares (cont.)

 This corresponds to a modified least-squares misfit function:

$$Misfit(m) = (d^{observed} - Lm)^T W^T W (d^{observed} - Lm)$$

and solution:

$$\boldsymbol{m} = \boldsymbol{L}_{g}^{-1} d^{observed}$$

$$\boldsymbol{L}_{g}^{-1} = (\boldsymbol{L}^{T} \boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{L} + \varepsilon \boldsymbol{I})^{-1} \boldsymbol{L}^{T} \boldsymbol{W}$$

Smoothness constraints

- When using finely-sampled models...
 - some cells may be poorly constrained;
 - solutions can become 'rough' (highly variable, noisy - see below)
- To remove roughness, additional 'smoothness constraint' equations can be added
 - These equations will be additional rows in L, for example:
 - $w m_i = w A verage(A djacent m_j)$
 - Zero Laplacian: $_{W}\nabla^{2}m=0$
- These equations require small weights w

Simple Iterative Inverse

- Sometimes matrix L^TL is also too large to invert, or even to store
- It can the be approximated by its diagonal:

$$\boldsymbol{m} = \left[diag(\boldsymbol{L}^T \boldsymbol{L}) + \varepsilon \boldsymbol{I}\right]^{-1} \boldsymbol{L}^T \boldsymbol{d}^{observed}$$

- The diagonal only contains one value per model cell (sum of squared L's for all rays crossing it)
- Contributions to m can be evaluated during a pass through all data and without storing matrices L or L^TL.
- Variants of this method are known as:
 - Back-projection method;
 - SIRT (Simultaneous Iterative Reconstruction technique)
 - ART (Algebraic Reconstruction Technique)

Simple Iterative Inverse (how it works)

Iteration:

$$\delta_1 \mathbf{d} = \mathbf{d}^{observed} - d_{0,}$$

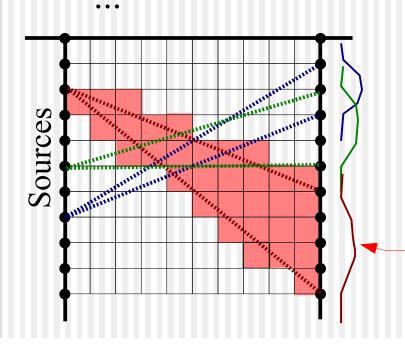
$$\delta_1 \mathbf{m} = \mathbf{L}_g^{-1} \delta_1 \mathbf{d}.$$

Travel times in "background model"

Approximate inverse of any kind of any kind

$$\delta_2 \mathbf{d} = \delta_1 \mathbf{d} - \mathbf{L} \delta_1 \mathbf{m} ,$$

$$\delta_2 \mathbf{m} = \mathbf{L}_g^{-1} \delta_2 \mathbf{d} ,$$



For each ray, the observed travel-time perturbation is thus "back-projected" into the slownness model

Resolution matrix

- Assessment of the quality of inversion method is often done by using the Resolution Matrix
 - Regardless of the selected form of the inverse, we can:
 - Perturb 1 parameter (grid node) of the model;
 - 2)Perform forward modeling (generate synthetic data);
 - 3)Perform the inverse.
 - When repeated for each parameter, this process results in a resolution matrix:

 $R = L_g^{-1} L$

- Note that R does not depend on the data values but depends on sampling
 - Crossing rays are VERY important in tomography.

Checkerboard resolution test

- Test of the resolution in the model when computation of the *Resolution Matrix* is impossible or impractical
- Method:
 - Create an artificial model perturbation in the form of alternating positive and negative anomalies ("checkerboard")
 - Predict the data in this model:

$$d' = L m_{checker}$$

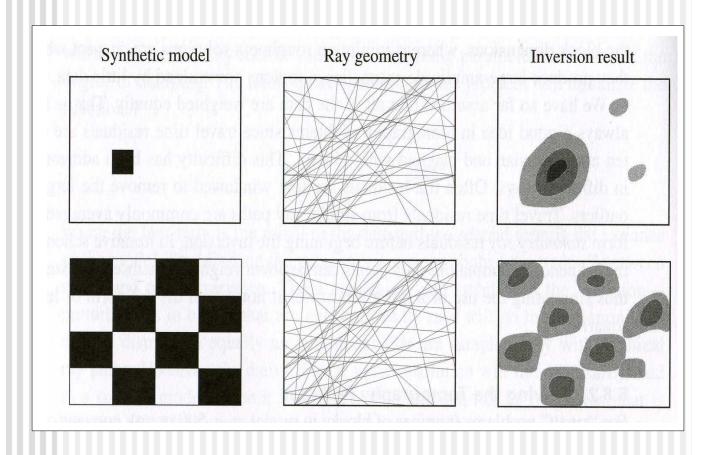
Invert the resulting synthetic data:

$$m' = L_g^{-1} d' = L_g^{-1} L m_{checker}$$

- Compare the result to the input model
 - The degree of reproduction of the anomalies indicate the quality of inversion

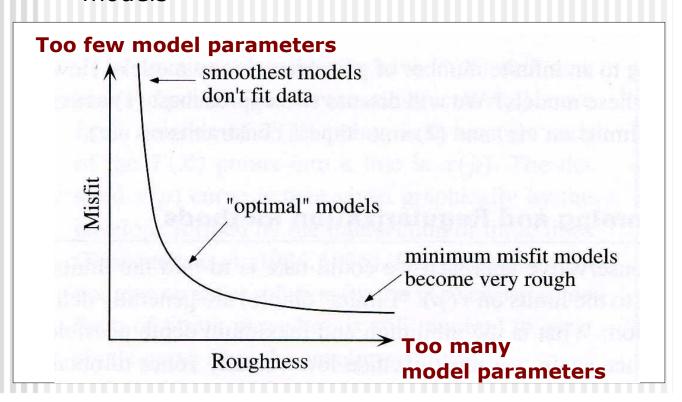
Checkerboard resolution test (cont.)

Schematic example from travel-time tomography:



Trade-off between data fit and model simplicity

- Too simple models often cannot explain the data
- However, excessively detailed models can "over-fit" the data and result in overly complex model
 - This complexity may be spurious and caused by the noise
- We need to look for "optimally" complex models



Test for statistical significance

- How can we verify that the model fits the data within reasonable error?
 - Complex models (with large numbers of unknowns) would often fit the data well;
 - Because the data contains noise, we should not over-fit the data!
- The χ^2 test is commonly used to determine whether the remaining data misfit is likely to be random:

$$\chi^{2} = \frac{\sum_{i=1}^{N} (t_{i} - t_{i}^{observed})^{2}}{\sigma^{2}}$$

- \bullet Here, σ is the estimated data uncertainty
- It needs to be somehow measured from the data (see eq. 5.31 in Shearer)

χ^2 test (cont.)

- The p.d.f of χ^2 is controlled by $N_{df} = N_{data} N_{model}$ ("number of data degrees of freedom").
- For a given N_{df}, tabulated percentage points of p.d.f.(χ²) can be used to determine whether the residual data misfit is likely to be random:

$N_{ m df}$	At 95%	At 50%	At 5%
5	1.15	4.35	11.07
10	3.94	9.34	18.31
20	10.85	19.34	31.41
50	34.76	49.33	67.5
100	77.03	99.33	124.34

The 95-% level is commonly used.

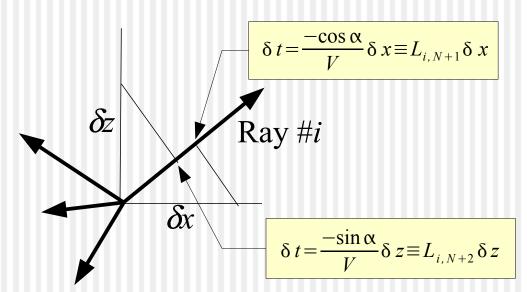
Source Location Problem

- When using a natural (impulsive) source, its location can also be determined by a similar approach.
 - This method is used for locating earthquakes worldwide
 - For monitoring creep of mine walls (potash exploration)
 - Monitoring reservoirs during injection (Weyburn)
- To solve this problem, we:
 - Start from some reasonable approximation for source coordinates and solve the velocity tomography problem.
 - Add the coordinates and time of the source to model vector:

$$m = \begin{vmatrix} s_1 = 1/V_1 \\ s_2 = 1/V_2 \\ \dots \\ s_N = 1/V_N \\ x_{source} \\ z_{source} \\ t_{source} \end{vmatrix}$$

Source Location (cont.)

• Include into the matrix **L** time delays associated with shifting the source by δx or δz :



- Now, when solved, the Generalized Inverse will yield the corrections to the location $(\delta x, \delta z)$.
- This process is often <u>iterated</u>: with the new source location, velocities are recomputed, and sources relocated again, etc.

Measures of data misfit ("data norms")

 The Least-Squares ("L2") norm can be highly sensitive to data outliers:

$$\varepsilon_{L2} = \sum_{i=1}^{N} (t_i - t_i^{observed})^2$$

- However, it is the easiest to use (only for this norm, L⁻¹ exists).
- Other useful norms:

•
$$L_n$$
 norms: $\varepsilon_{L_n} = \sum_{i=1}^{N} |t_i - t_i^{observed}|^n$

•
$$L_{\infty}$$
 norm: $\epsilon_{L_{\infty}} = max_i |t_i - t_i^{observed}|$

The "L₁" norm is less sensitive to outliers
 (i.e., anomalous errors), and therefore also often used:

$$\varepsilon_{L_1} = \sum_{i=1}^{N} |t_i - t_i^{observed}|$$

L₁-norm inversion

- Solutions minimizing L₁ and similar norms are derived from L₂ by iterative reweighting:
 - 1) Use the least-squares inverse to minimize

$$\varepsilon_{L2} = \sum_{i=1}^{N} (t_i - t_i^{observed})^2$$

2) Apply weights based on current data errors:

$$W_{i} = \frac{1}{\sqrt{|t_{i} - t_{i}^{observed}|}}$$

$$\varepsilon_{L2} = \sum_{i=1}^{N} W_i^2 (t_i - t_i^{observed})^2 \approx \sum_{i=1}^{N} |t_i - t_i^{observed}|$$

3) Iterate