
GEOL882.3GEOL483.3

Elements of 
Rock Mechanics

Stress and strain

Creep

Constitutive equation
Hooke's law

Empirical relations

Effects of porosity and fluids

Anelasticity and viscoelasticity

Reading:
➢ Shearer, 3



GEOL882.3GEOL483.3

Stress

Consider the interior of a deformed 
body: At point P, force dF acts on 

any infinitesimal area dS. dF 
is a projection of  stress 
tensor, s, onto n:

Stress s
ij
 is measured in [Newton/m2], or Pascal 

(unit of pressure).

dF can be decomposed into two components 
relative to the orientation of the surface, n:

Parallel (normal stress)

Tangential (shear stress, traction)

dF i= ij n j dS

dF ni=ni⋅(projection of F onto n)=ni kj nk n j dS

Note 
summation 
over k and jdF =

dF− dFn
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Forces acting 
on a small cube 

Consider a small parallelepiped          
(dx dydz=dV) within the elastic body.

Exercise 1: show that the force applied 
to the parallelepiped from the outside 
is:

(This is simply minus divergence 
(“convergence”) of stress!)

Exercise 2: Show that torque applied to 
the cube from the outside is:

F i=−∂ j ij dV

Li=−ijk jk dV

Keep in mind
implied summations 
over repeated indices
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Symmetry of stress 
tensor

Thus, L is proportional to dV: L = O(dV)

The moment of inertia for any of the axes is 
proportional to dVlength2:

and so it tends to 0 faster than dV: I = o(dV).

Angular acceleration: q = L/I, must be finite as dV  0, 
and therefore:

Consequently, the stress tensor is symmetric:      
  

ij
 = 

ji


ji
 has only 6 independent parameters out of 9:

I x=∫
dV

 y2z2dV

Li /dV=−ijk  jk=0.

Big “O”

Little “o”
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Principal stresses

The symmetric stress matrix can always be 
diagonalized by properly selecting the (X, Y, Z) 
directions (principal axes)

For these directions, the stress force F is 
orthogonal to dS (that is, parallel to 
directional vectors n)  

With this choice of coordinate axes, the 
stress tensor is diagonal: 

Negative values 
mean pressure,

positive - tension

For a given s, principal axes and stresses can be 
found by solving for eigenvectors of matrix s:  

σ e i=λ i e i

Principal stress

Principal direction vector
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Mohr's circle

It is easy to show that in 2D, when the two 
principal stresses equal s

1
 and s

2
, the normal 

and tangential (shear) stresses on surface 
oriented at angle q equal:

Mohr (1914) illustrated these formulas with a 
diagram:

yy
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Mohr's circle (cont.)

Two ways to use:

1) When knowing the principal stresses and 
angle q, start from points s

1
, s

2
, and find s

n
 

and s
t
. 

 When knowing the stress tensor (s
xx
, s

xy
, and 

s
yy
), start from points A and B and find s

1
, s

2
, 

and the direction of principal direction s
1
 (q).

yy
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Strain

 Strain is a measure of 
deformation, i.e., variation of 
relative displacement as 
associated with a particular 
direction within the body

 It is, therefore, also a tensor
Represented by a matrix

Like stress, it is decomposed into 
normal and shear components

 Seismic waves yield strains of    
10-10-10-6

So we can rely on infinitesimal 
strain theory 
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Elementary Strain

When a body is deformed, 
displacements (U) of its points are 
dependent on (x,y,z), and consist of:

Translation (blue arrows below)

Deformation (red arrows) 

Elementary strain is:  eij=
∂U i

∂ x j
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Stretching and 
Rotation

Exercise 1: Derive the elementary 
strain associated with a uniform 
stretching of the body:

x '
y '=1 0

0 1 x
y .

Exercise 2: Derive the elementary 
strain associated with rotation by a 
small angle a:

What is characteristic about this strain 
matrix?  

x '
y '= cos sin

−sin cosx
y.
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Strain Components

Anti-symmetric combinations of  eij yield 
rotations of the body without changing its 
shape:

e.g.,                    yields rotation about the 'y' 
axis.

So, the case of                 is called pure shear 
(no rotation).

To characterize deformation, only the 
symmetric component of the elementary 
strain is used:

1
2

∂U z

∂ x
−
∂U x

∂ z


∂U z

∂ x
=
∂U x

∂ z
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Dilatational Strain 
(relative volume change during 
deformation)

Original volume: V=xyz

Deformed volume: V+V=(1+xx)

(1+
yy
)(1+

zz
)xyz

Dilatational strain:

Note that shearing (deviatoric) strain 
does not change the volume.

=
V
V
=1 xx 1 yy1 zz −1≈ xx yy zz

=ii=∂i U i=
∇ U=div U
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Deviatoric Strain 
(pure shear)

Strain without change of volume: 

ε̃ij=εij−
Δ
3
δij

Trace (ε̃ij)≡ε̃ii=0
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Constitutive equation

The “constitutive equation” describes the 
stress developed in a deformed body:

F = -kx for an ordinary spring (1-D)

 ~ (in some sense) for a 'linear', 'elastic' 
3-D solid. This is what these terms 
mean:

For a general (anisotropic) medium, 
there are 36 coefficients of 
proportionality between six independent 


ij
 and six 

ij
:
 ij=ij , kl  kl .
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Hooke's Law
(isotropic medium)

For  isotropic medium, the instantaneous 
strain/stress relation is described by just 
2 constants:


ij
 = d

ij


ij
 

d
ij 
is the “Kronecker symbol” (unit 

tensor) equal 1 for i =j and 0 
otherwise;

and are called the Lamé constants.

Question: what are the units for and ?
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Elastic moduli

Although and  provide a natural 
mathematical parametrization for s(e), 
they are typically intermixed in 
experiment environments

Their combinations, called “elastic 
moduli” are typically directly 
measured.

For example, P-wave speed is 
sensitive to M = l + 2m , which is 
called the “P-wave modulus”

Two important pairs of elastic moduli are:

Young's and Poisson's

Bulk and shear 
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Young's and Poisson's 
moduli

Depending on boundary conditions (i.e., 
experimental setup), different combinations 
of 'and   may be convenient. These 
combinations are called elastic constants, or 
moduli:

Young's modulus and Poisson's ratio:
• Consider a cylindrical sample uniformly 

squeezed along axis X:

Note: The Poisson's ratio is more often denoted s

It measures the ratio of l and m: 


=

1
2

−1

E=
 xx

 xx

=
 32


=
 zz

 xx

=


2



GEOL882.3GEOL483.3

Bulk and Shear Moduli

Bulk modulus, K
• Consider a cube subjected to hydrostatic 

pressure 

The Lame constant  complements K in 
describing the shear rigidity of the 
medium. Thus,  is also called the 
'rigidity modulus'

For rocks:
• Generally, 10 Gpa <  < K < E < 200 Gpa

•  0 <  < ½ always; for rocks, 0.05 <  < 0.45, 
for most “hard” rocks,  is near 0.25.

For fluids,   ½ and =0 (no shear resistance)
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Empirical relations:
K,l,m(r,V

P
)

From expressions for wave velocities, 
we can estimate the elastic moduli:

=V S
2

=V P
2
−2V S

2


K=
2
3
=V P

2
−

4
3

V S
2



GEOL882.3GEOL483.3

Empirical relations:
density(V

P
)

Nafe-Drake curve for a wide variety of 
sedimentary and crystalline rocks 
(Ludwig, 1970):

[g /cm3
]=1.6612V P−0.4721V P

2

0.0671V P
3−0.0043V P

4

0.000106 V P
5

Gardner's rule for sedimentary rocks 
and 1.5 < V

P
 < 6.1 km/s (Gardner et 

al., 1984):

[g /cm3
]=1.74V P

0.25

For crystalline rocks rocks  5.5 < V
P
 < 

7.5 km/s (Christensen and Mooney., 
1995):

[g /cm3
]=0.5410.3601V P

(See the plot is in the following slide)
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Empirical relations:
density(V

P
)

From T. Brocher, USGS Open File Report 05-1317, 2005

Nafe-Drake curve
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Empirical relations:
V

S
(V

P
)

“Mudline” for clay-rich sedimentary 
rocks (Castagna et al., 1985)

V S [km/ s ]=V P−1.36/1.16

“Mafic line” for calcium-rich rocks 
(dolomites), mafic rocks, and 
gabbros (Brocher, 2005):

V S [km/ s ]=2.88+ 0.52(V P−5.25)

Extension for higher velocity crustal 
rocks (1.5 < V

P
 < 8 km/s; 

California, Brocher, 2005):

V S [km/ s ]=0.7858−1.2344V P0.7949V P
2

−0.1238V P
30.0064 V P

4

(See the plot is in the following slide)
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Empirical relations:
V

S
(V

P
)

From T. Brocher, USGS Open File Report 05-1317, 2005
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Effect of pressure

Differential pressure is the difference of 
confining and pore pressures (related 
to pressure within rock matrix)

Differential pressure closes cracks and 
generally increases the moduli, 
especially K:

Dry carbonate sample from Weyburn reservoir

Note 
the hysteresis
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Effects of porosity

Pores in rock
Reduce average density, r
Reduce the total elastic energy 
stored, and thus reduce the K 
and m

Fractures have similar effects, 
but these effects are always 
anisotropic
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Effects of pore fluids

Fluid in rock-matrix pores increases the 
bulk modulus

Gassmann's model (next page)

It has no effect on shear modulus

Relative to rock-matrix r, density 
effectively decreases:

where r
f
 is fluid density, and a > 1 is the 

“tortuosity” of the pores  

In consequence, V
P
 increases, V

S
 

decreases, and the Poisson's ratio and 
V

P
/V

S
 increase

 f 1−a 
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Gassmann's equation
(“fluid substitution”)

Relates the elastic moduli of fluid-
saturated rock (K

s
, m

s
) to those of dry 

porous rock (K
d
, m

d
):

where K
f
 is fluid bulk modulus, and K

0
 is the bulk 

modulus of the matrix

Note:   

Assumptions:
Isotropic, homogeneous, elastic, monomineralic 
medium;

Pore space is well-connected and in pressure 
equilibrium;

Closed system with no fluid movement across  
boundaries;

No chemical reactions.

K s=Kd
K 01−Kd /K 0

2

1−K d /K0− 1−K 0/K f 

 s=d

K fK dK sK 0
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Creep

When step-function stress             
s(t) = s

0
q(t) is applied to a solid, it 

exhibits creep:

 t =
0

M U

[1t ]

“Creep function”

“Unrelaxed modulus”

Relaxation time
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Viscoelasticity

It is thought that creep-like 
processes also explain:

Attenuation of seismic waves (0.002 – 100 Hz)

Attenuation of Earth's free oscillations (periods 
~1 hour)

Chandler wobble (period ~433 days)

General viscoelastic model: stress 
depends on the history of strain rate

Constitutive equation for the “standard 
linear solid” (Zener, 1949):

t =∫−∞
t

M t− ̇d 

Viscoelastic modulus

σ+ τσ σ̇=M (ε+ τεε̇)
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Elastic Energy Density

Mechanical work is required to deform 
an elastic body; as a result, elastic 
energy is accumulated in the 
strain/stress field

When released, this energy gives rise 
to earthquakes and seismic waves

For a loaded spring (1-D elastic body),   
E= ½kx2=½Fx

Similarly, for a deformed elastic 
medium, the elastic energy density is:

Eelastic=
1
2
σij εij
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Energy Flux in a Wave

Later, we will see that in a wave, the 
kinetic energy density equals the 
elastic energy:

Eelastic=
1
2
σij εij=1 ove2ρ u̇2

1
2
σ ijεij=

1
2
ρ u̇2

The energy propagates with wave 
speed V, and so the average energy 
flux equals:

J=VE=ρV ⟨ u̇2
⟩=

1
2

Z Av
2

and so the total energy density:

E=
1
2
σij εij+

1
2
ρ u̇2

=ρu̇2

where Z = rV is the impedance, and A
v
 is 

the particle-velocity amplitude
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Lagrangian mechanics

Instead of equations of motion, modern 
(i.e., 18th century!) “analytical 
mechanics” is described in terms of 
energy functions of generalized 
coordinates x and velocities  x:

Kinetic: (for example)

Potential:

These are combined in the Lagrangian 
function:

Equations of motion become:

E k=
1
2

m ẋ2

E p=
1
2

k x2

L x , ẋ =Ek−E p

d
dt 

∂ L
∂ ẋ −

d L
d x

=0

.
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Lagrangian mechanics
of elastic medium

Lagrangian of isotropic elastic field:

This shows the true meanings of Lamé 
parameters

They correspond to the contributions of 
two different types of deformation 
(compression and shear) to the potential 
energy 

L u , u̇=∫dV [12  u̇ i u̇i−12   ii
2
 ij ij]

These are the only two 
second-order combinations of e 

that are scalar and 
invariant with respect to rotations
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Lagrangian mechanics

Exercise: use the Hooke's law to show 
that

     is indeed equivalent to:

Eelastic=
1
2
 ij ij

Eelastic=
1
2
 ii

2
 ij ij
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