SEISMOLOGY

- Utilizes seismic (two types of sound) waves to make statements about the Earth's structure.
- By far the highest-resolution geophysical technique.
- As a Geophysics discipline, consists of:
 - Measurements ('data acquisition');
 - Emphasis on efficient acquisition techniques, vast volumes of data;
 - Data processing and analysis;
 - Very important and computer-based;
 - Interpretation in terms of models and geological concepts:
 - Forward (direct) modelling predict seismic observations in a known subsurface structure;
 - Inverse modelling Given the observed wavefield (travel times), determine the structure and its uncertainty.
 - Usually integrated with surface and borehole observations.

Reading:

- > Telford et al., Chapter 1.
- Shearer, Chapter 1

Seismic Methods Their Resolution; 'Passive' and 'Active'

Method	Property	Resolution	Value Measured
Surface refraction	Velocities, velocity gradients	20 m-100 km	Travel times
Surface reflection	Impedance contrasts	0.5 – 20 m	Travel times, amplitudes, reflection patterns
Vertical seismic profiling	Velocities, reflectivity	0.2 – 5 m	Travel times, waveforms
Borehole acoustic logs	Velocities near the borehole, at $\sim 10 - 50$ kHz	0.1 m	Pulse time delays
Borehole cross-well	Velocity contrasts at ~10 - 50 kHz	~5 m	Travel-time delays
Laboratory ultrasonic	Velocities at ~100 kHz, anisotropy	1 – 5 cm	Travel times in samples
Surface waves	Velocity structure (primarily of S-waves)	10 m – 100 km	Phase spectra of waves from artificial and natural seismic sources; Dispersion curves
Monitoring	Location of creep within reservoirs and mines, natural earthquakes, weapons tests	100 m – 30 km	Travel times
Teleseismic	Location of earthquakes, velocity structures, reflecting and converting boundaries	30 – 100 km	Waveforms of body and surface waves (~1-1000 sec periods)
Normal modes	Whole-Earth oscillations	1000 km	Earth movements at > 1000 sec periods

Acoustic/Seismic Spectrum

Key to signal penetration and resolution:

- <u>Resolution</u> (the amount of resolvable detail) is typically proportional to frequency;
- Signal <u>penetration</u> quickly decreases with increasing frequency.

Earth is complex

and so are the observations, but models are always simplified

- Observations are limited to the surface or a few boreholes.
- Different rocks often have similar seismic properties:
 - Seismic waves are sensitive to combinations of V_p, V_s, and density;
 - Spatially-averaged and sample-derived properties are different;
 - Seismic properties are often *frequencydependent*.
- Therefore, ambiguities in interpretations are common.
 - Solution always estimate the errors and apply multiple methods to remove

Earthquake seismology

Teleseismic

(Using signals from earthquakes beyond ~2500 km)

Nuclear Explosions

Deep structure

- Velocity heterogeneity;
- Reflecting boundaries;
- Attenuating zones (partial melts?) within the mantle.
- Scattering zones (?).

Oil/Gas exploration seismology

Shallow seismology

Key texts

- Aki, K., and P. G. Richards (2002). *Quantitative Seismology*, Second Edition, University Science Books, Sausalito, CA, 699 pp.
- Červený, V. (2001) Seismic ray theory, Cambridge Univ. Press, 713 pp.
- Chapman, C. (2004) Fundamentals of seismic wave propagation, Cambridge Univ. Press., 608 pp.
- Dahlen, F. A., and J. Tromp (1998). Theoretical global seismology, Princeton Univ. Press, 1025 pp.
- Jaeger, J.C., N.G.W. Cook, and R.W. Zimmerman (2007). *Fundamentals of rock mechanics*, 4th edition, Blackwell, 475 pp.
- Mavko, G., T. Mukerji, and J. Dvorkin (2009), The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd edition, Cambridge Univ. Press, 511 pp.
- Sheriff, R. E. (1991) Encyclopedic dictionary of Exploration geophysics, 3rd edition, Tulsa, OK, 384 pp.
- Udías, A. (1999). Principles of seismology, Cambridge Univ. Press, 475 pp.
- Yilmaz, O. (2002) Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, SEG, 2027 pp.

ge-o-phys-i-cist, n.

A geophysicist is a person who passes as an exacting expert on the basis of being able to turn out, with prolific fortitude, infinite strings of incomprehensible formulae calculated with micrometric precision from vague assumptions, which are based on debatable figures taken from inconclusive experiments, carried out with instruments of problematic accuracy by persons of doubtful reliability and questionable morality for the avowed purpose of annoying and confounding a hopeless chimerical group of fanatics known as geologists who are themselves the lunatic fringe of the scientific community.