GEOL483.3

Time and Spatial Series

o

d

and Transforms

Z- and Fourier transforms
Gibbs' phenomenon
Transforms and linear algebra
Wavelet transforms

* Reading:
~ Sheriff and Geldart, Chapter 15
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Z-Transform

@ Consider a digitized record of N
readings: U={u,, u,, u,, ..., Uy, ). HOW
can we represent this series differently?

® The Z transform simply associates with
this time series a polynomial.:

Z(U): Uy + Uz + U2 AUz

* For example, a 3-sample record of
{1,2,5} is represented by a quadratic
polynomial:

1+ 2z+ 52°.
® In Z-domain, the all-important
operation of convolution of time series

becomes simple multiplication of their
Z-transforms:

uy(t)%u, (1)U, (2) U, (2)
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Fourier Transform

@ To describe a polynomial of order N-1, it is

sufficient to specify its values at N points in
the plane of “z”

@ The Discrete Fourier transform is obtained
by taking the Z-transform at N points
uniformly distributed around a unit circle on

the complex plane of z:
¥ 21Tk

Ze u(t,) k=0,1,2,...,N—1

* Each term (k>0) in the sum above is a
periodic function (a combination of sin
and cos), with a period of N/k sampling
intervals:

e'*=cos(a)+isin(x)

® Thus, the Fourier transform expresses
the signal in terms of its frequency
components,

¢+ and also has the property of the Z-
transform regarding convolution



Matrix form of
Fourier Transform
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New!

@ Note that the Fourier transform can be
shown as a matrix operation:

@ Jnverse: /
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New!

Resolution of
Fourier Transform

* Resolution matrix:
R,=F 'F

» If all N frequencies are used:
R.=1

» [If fewer than N frequencies are used
(Gibbs phenomenon):

R, #1
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New!

Integral Fourier Transform

® For continuous time and frequency
(infinitesimal sampling interval and
infinite recording time), Fourier
transform reads:

* Forward: U(w)
1 —i Wt
» Inverse: u(t)=:fdu)U(m)e .

®m [n practice, the bandwidth (and time)
is always limited, and so the actual
combination of the forward and inverse
transforms is rather:

u(t)= 2“ f dwlfd'ru T)e lm]eim.

O

max

u(t):z%c_foo dtu(t) f d(x)eim(t_r)-.
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New!

Gibbs' phenomenon

®m At a discontinuity, application of the Fourier
forward and inverse transform (with a limited

bandwidth), results in ringing.

Note the ~9% “overshoot™

ﬁ at the top and the bottom
Step function is ol N
reproduced with
~18% amplitude
distortion
and ripples N

on each side
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®m This is important for constructing time and

frequency windows

@ Boxcar windows create ringing at their

edges.

@ “Hanning” (cosine) windows are often used

to reduce ringing:

At

Hm(t):%(l—cos“—t).
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Spectra of Pulses
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@ For a pulse of width T s, its spectrum is about
1/T Hz in width:
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» Equal-amplitude (co)sinusoids from 0O to f
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Sample Fourier Transforms
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From Sheriff, Geldart, 1995

Compare the transforms within the boxes...
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New!

Wavelet transforms

@ Lijke the inverse Fourier transform,

wavelet decomposition represents the
time-domain signal as a combination of
wavelets of some desired shapes:

u(ﬁ) fl(tl) fz(t1) f3<t1) - la,
“(tz) 1] f1(t2) fz(tz) f3<t2) - || a,
u(t3) f1<t3) fz(t3) f3<f3) - || a,

Wavelet shapes iy Wavelet amplitudes A

@ Ideally, wavelets should form a
complete orthonormal basis:

exp(...) functions

N -1

.l | used in
Z fi <tk>fj(tk)_6ij Fourier transforms
k=0 satisfy this property

although this is not really necessary

@ Usually, functions f(t) represent time-
scaled and shifted versions of some
“wavelet” W(t)
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