Attenuation and dispersion

- Mechanisms:
 - Absorption (anelastic);
 - Scattering (elastic).
- P- and S-wave, bulk and shear attenuation
- Mathematical descriptions
- Measurement
- Frequency dependence
- Velocity dispersion, its relation to attenuation
 - Reading:
 - Shearer, 6.2, 6.6
 - Sheriff and Geldart, Sections 2.7; 6.5

Mechanisms of attenuation

- Three processes lead to reduction of elastic amplitude as the wave propagate away from the source:
 - Geometrical spreading total energy is conserved but distributed over larger wavefronts
 - In fact, not so easy to define mathematically
 - Scattering (elastic attenuation) elastic energy is scattered out of the seismic phase of interest
 - In practice, can be hard to differentiate from geometrical spreading
 - Anelastic (intrinsic) attenuation, or absorption – elastic energy is converted to heat
 - Key distinction frequency dependence

Absorption

- When an elastic wave travels through any medium, its mechanical energy is progressively converted to heat (through friction and viscosity)
 - On grain boundaries, pores, cracks, water, gas, etc.
 - Loss of elastic energy causes the amplitude to decrease and the pulse to broaden.

Area of the hysteresis curve is a measure of absorption

Scattering

- Wavelength- dependent;
- Scattering regime is controlled by the ratio of the characteristic scale length of the heterogeneity of the medium, a, to the wavelength.
- Described in terms of *wavenumber*, $k=2\pi/wavelength$:
 - ka << 0.01 (quasi-homogeneous medium) - no significant scattering;
 - ka < 0.1 (Rayleigh scattering) produces apparent Q and anisotropy;
 - 0.1 < ka < 10 (Mie scattering) introduces strong attenuation and discernible scattering noise in the signal.
 - typical for high-resolution seismic studies (boulder clay with 0.5-1 m boulders, $V_{p} \approx 2000 \text{ m/s}$, $f \approx 500 \text{ Hz}$

Quality Factor, Q

- Attenuation is measured in terms of quality factor, Q:
 - The logarithmic decrement of amplitude α is generally proportional to frequency

$$A(t) = A(0)e^{-\alpha x} = A(0)e^{-\frac{\pi t}{Q}}$$
Therefore,

Q here is approximately frequency-independent

Amplitude and energy loss per cycle (wavelength):

$$\ln\left(\frac{A(t+T)}{A(t)}\right) = \frac{-\pi fT}{Q} = \frac{-\pi}{Q}$$

This value, in dB, is also often used to characterize attenuation

$$\ln\left(\frac{E(t+T)}{E(t)}\right) = \ln\left(\frac{E(t)-\delta E}{E(t)}\right) = \frac{-\delta E}{E(t)} = \frac{-2\pi}{Q}$$

Thus, Q measures relative energy loss per cycle: $Q = 2\pi \frac{E}{s E}$

- Typical values:
 - $Q \approx 30$ for weathered sedimentary rocks;
 - $Q \approx 1000$ for granite.

Q_P and Q_S

- P- and S-waves have different Q's
- Q_p and Q_s are thought to be related to the quality factors associated with the K and μ moduli of the medium:

$$Q_P^{-1} = L Q_{\mu}^{-1} + (1 - L) Q_{\kappa}^{-1}$$

$$Q_S^{-1} = Q_{\mu}^{-1}$$
Shear attenuation
$$Q_S^{-1} = Q_{\mu}^{-1}$$

where:
$$L = \frac{4}{3} \left(\frac{V_S}{V_P} \right)^2$$

ullet $Q_{_{\kappa}}$ is usually very high (assumed infinite)

Pecause
$$\frac{V_S}{V_P} \approx \frac{1}{\sqrt{3}} \cdots \frac{1}{2}$$
, typically: $Q_P^{-1} \approx \left(\frac{1}{3} \cdots \frac{1}{2}\right) Q_S^{-1}$

This is not that simple though...

Q may not really be a true medium property

Typical values of Q_p

Table 6.1 Absorption constants for rocks

	Q	$\delta (dB) = \eta \lambda$
Sedimentary rocks	20-200	0.16-0.02
Sandstone	70-130	0.04-0.02
Shale	20-70	0.16-0.05
Limestone	50-200	0.06-0.02
Chalk	135	0.02
Dolomite	190	0.02
Rocks with gas in pore space	5-50	0.63-0.06
Metamorphic rocks	200-400	0.02-0.01
Igneous rocks	75–300	0.04-0.01

For sandstones with porosity ϕ % and clay content C %, at 1 MHz and 40 MPa:

$$Q_{p} = 179 \text{C}^{-0.84\phi}$$

General model for Q measurement

The following model of seismic amplitudes is commonly used in attenuation measurements:

- Therefore, two basic approaches to measurement:
 - 1) Model-based correction for geometrical spreading G(t) and $A_{source}(f)$
 - 2) Using ratios of spectral amplitudes

Spectral ratios

- Take spectral ratios of seismic spectra measured at two propagation times
 - The signal in the two windows must be the same in all other respects.

Phase-Velocity dispersion

- When phase velocity is dependent on frequency, the wave is called dispersive:
 - Wavelet changing shape and spreading out when traveling
 - Group velocity (velocity of wave packet, U) is different from phase velocity (V):
 - U < V "Normal dispersion";
 - U > V "Inverse dispersion".

Group and phase velocities

Consider a plane harmonic wave:

$$u(x,t)=Ae^{i\varphi(x,t)}=Ae^{i[k(\omega)x-\omega t]}$$

where $k=\omega/V$ is the wavenumber.

- Note that k is dependent on ω .
- Phase velocity is the velocity of propagation of the constant-phase plane $(\varphi(x,t)=\text{const})$:

$$V_{phase} = \frac{\omega}{k}$$

- Group velocity is the velocity of propagation of the amplitude peak in the wavelet
 - this is the point where the phase is stationary (independent on ω):

$$\frac{d[k(\omega)x - \omega t]}{d\omega} = \frac{dk(\omega)}{d\omega}x - t = 0$$

hence:
$$U_{group} = \left[\frac{dk}{d\omega}\right]^{-1} = \frac{d\omega}{dk}$$

Group velocity

Example: two cosine waves with

$$\omega_1 = \omega_0 - \Delta \omega$$
, $k_1 = k_0 - \Delta k$
 $\omega_2 = \omega_0 + \Delta \omega$, $k_2 = k_0 + \Delta k$

superimpose to form beats:

Show that the envelope of these beats travels with group velocity:

$$U = \frac{\Delta \omega}{\Delta k}$$
.

...while within the beats, peaks and troughs propagate at approximately:

$$V = \frac{\omega}{k}$$
.

Normal and Inverse dispersion

When phase velocity is frequencydependent, group velocity differs from it:

$$U = \frac{d \omega}{dk} = \frac{d (kV)}{dk} = V + k \frac{dV}{dk} = V - \lambda \frac{dV}{d \lambda} \approx V + \omega \frac{dV}{d \omega}.$$

because $k = 2\pi/\lambda = \omega/V$.

Therefore:

$$\frac{dV}{d\omega}$$
<0.

Normal dispersion (typically observed in ground roll)

$$\frac{dV}{d\omega} > 0.$$
 Inverse dispersion

Example: normal dispersion of surface waves

 Normal dispersion occurs because the deeper layers are generally faster

Attenuation and Dispersion

- Attenuating medium is always dispersive
 - Example: ground roll is quickly attenuated and shows strong normal dispersion.
- Causality requires that lower-frequency wave components travel slower (i.e., inverse dispersion):

- Mathematically, this is expressed by the so-called "Kramers-Krönig relations"
- For example, in a constant-Q medium,

$$c(\omega) = c(\omega_0) \left[1 + \frac{1}{\pi Q} \ln \frac{\omega}{\omega_0} \right]$$
Inverse dispersion