Geometrical^{GEOL483.3} Seismics *Refraction*

- Refraction paths \bullet
	- Head waves
	- **Diving waves**
- **Effects of vertical velocity gradients**
- Reading:
	- ➢ Sheriff and Geldart, Chapter 4.2 4.3.

Snell's Law of Refraction

- When waves (rays) penetrate a medium with ۵ different velocity, they *refract*, i.e. bend toward or away from the normal to the velocity boundary.
- The *Snell's Law of refraction* relates the ۵ angles of incidence and emergence of waves refracted on a velocity contrast:

Refraction in a stack of horizontal layers

Critical Angle of Refraction

- Consider a faster medium overlain with a lowervelocity layer (this is a typical case).
- *Critical angle* of incidence in the slower layer is such that the refracted waves (rays) travel horizontally in the faster layer (sin $r = 1$)
- The critical angles thus are:

$$
i_C = \sin^{-1} \frac{V_{P_1}}{V_{P_2}}
$$
 for P-waves,

$$
i_C = \sin^{-1} \frac{V_{S_1}}{V_{S_2}}
$$
 for S-waves.

- Critical *ray parameter*: *p critical* = 1 *Vrefractor*
- **If the incident wave strikes the interface at an** angle exceeding the critical angle, *no refracted or head wave is generated*.
- Note that *i_c* should better be viewed as a *property of the interface*, not of a particular ray.

Head wave

- At critical incidence in the upper medium, a *head* ۵ *wave* is generated in the lower one.
- Although head waves carry very little energy, they are 3 useful approximation for interpreting seismic wave propagation in the presence of strong velocity contrasts.
- Head waves are characterized by planar wavefronts \bullet inclined at the critical angle in respect to the velocity boundary. Their travel-time curves are straight lines:

$$
t = t_0 + \frac{x}{V_{app}}
$$

Here, t_0 is the intercept time, and V_{app} is the
apparent velocity.

Lower velocity material

 V_1

 V_2

 V_2

Wavefront in
lower layer

GEOL483.3 GEOL882.3

Relation between reflection- and refraction travel-times

New!

Critical and Cross-over distances vs. velocity contrast

 Note that the distances are *proportional* to the depth and *decrease* with increasing velocity contrast across the interface

Travel times *(Horizontal refractor)*

Direct wave: \bullet

$$
t(x) = \frac{x}{V_1}.
$$

Head wave: \bullet

$$
p = \frac{V}{V_2}
$$

\nsin $i = pV_1$ $\cos i = \sqrt{1 - (pV_1)^2}$
\n
$$
t = 2\frac{h_1}{V_1 \cos i} + p(x - 2h_1 \tan i) = \frac{2h_1}{V_1 \cos i} (1 - pV_1 \sin i) + px = \frac{2h_1}{V_1 \cos i} \cos i + px
$$

\n
$$
t_0 = \frac{2h_1}{V_1} \cos i = \frac{2h_1}{V_1} \sqrt{1 - (pV_1)^2}
$$

GEOL483.3

Travel times *(Multiple horizontal layers)*

Travel times *(Dipping refractor)*

GEOL483.3

Hidden-Layer Problem

 Velocity contrasts *may not manifest themselves* in refraction (first-arrival) travel times. Three typical cases:

Reversed travel times

- **One needs** *reversed* **recording (in opposite** directions) for resolution of dips.
- **The** *reciprocal times*, T_{R} , must be the the same for reversed shots.
- Dipping refractor is indicated by:
	- Different *apparent velocities* (=1/*p*, TTC slopes) in the two directions;
		- \triangleright determine $\boldsymbol{V}_{\!_2}$ and α (refractor velocity and dip).
	- Different *intercept times*.
		- \rightarrow determine $h_{\scriptscriptstyle d}$ and $h_{\scriptscriptstyle u}$ (interface depths).

sin*i c*

.

Determination of refractor velocity and dip

- \blacksquare *Apparent velocity* is $V_{_{\rm app}}=1/p$, where p is the *ray parameter (i.e*., slope of the travel-time curve).
	- Apparent velocities are measured directly from the observed TTCs;
	- $V_{app} = V_{refractor}$ only for horizontal layering.

• For a dipping refractor:

 \rightarrow Down dip: $V_d = \frac{V_1}{\sin(i + \infty)}$ (slower than V_1); ➢ Up-dip: (*faster*). *V*1 $\sin(i_c + \alpha)$ V_{u} = \bar{V}_1 $\sin(i_c - \alpha)$

 From the two reversed apparent velocities, $i_{c}^{}$ and α are determined:

$$
i_c + \alpha = \sin^{-1} \frac{V_1}{V_d},
$$

$$
i_c - \alpha = \sin^{-1} \frac{V_1}{V_u} \implies \begin{pmatrix} i_c = \frac{1}{2} (\sin^{-1} \frac{V_1}{V_d} + \sin^{-1} \frac{V_1}{V_u}), \\ \alpha = \frac{1}{2} (\sin^{-1} \frac{V_1}{V_d} - \sin^{-1} \frac{V_1}{V_u}). \end{pmatrix}
$$

From i_c , the refractor velocity is: $v_c = \frac{V_1}{V_2 - \frac{V_1}{2}}$

Approximation of small refractor dip

If refractor dip is small: V_{1} *V d* $=\sin(i_c+\alpha) \approx \sin i_c + \alpha \cos i_c$ \overline{V}_1 *V u* $=$ sin $(i_c - \alpha) \approx$ sin $i_c - \alpha \cos i_c$,

and therefore:

$$
\sin i_c \approx \frac{V_1}{2} \left(\frac{1}{V_d} + \frac{1}{V_u} \right).
$$

and:

$$
\frac{1}{V_2} \approx \frac{1}{2} \left(\frac{1}{V_d} + \frac{1}{V_u} \right).
$$

 Thus, the *slowness of the refractor* is approximately the mean of the up-dip and down-dip *apparent slownesses*.

Diving waves

- Consider velocity gradually increasing with depth: *V*(*z*).
- Rays will bend upward at any point and eventually will return to the surface
	- Such waves are called *diving waves*.
- An *implicit* solution for the travel-time curve (*x*,*t*) can be obtained from the multiple-layer refraction formulas:

$$
x(p)=2\int_{0}^{h_{max}}\frac{pV(z)dz}{\sqrt{1-(pV(z))^{2}}},
$$

$$
t(p)=2\int_{0}^{h_{max}}\frac{dz}{V(z)\sqrt{1-(pV(z))^{2}}},
$$

where h_m is the depth at which $pV(h_m)=1$.

Diving waves Linear increase of velocity with depth **c** Consider: $V(z) = V_0 + az$. *a* is generally between 0.3-1.3 1/s. Hence, denoting *u*=*pV*=sin *i*: $x(u)=\int$ *z* 0 \int_a^z *pV dz* $\frac{p \cdot az}{\sqrt{1-(pV)^2}} =$ 1 *pa* ∫ $u_{\overline{0}}$ *u udu* $\frac{u \, du}{\sqrt{1-u^2}} =$ *=* 1 *pa* $(\sqrt{1-u^2}-\sqrt{1-u_0^2})\equiv$ 1 *pa* $\sqrt{1-u^2+x_c}$ $t(p)=\int$ *z*0 *z dz* $\frac{d^{2}y}{V\sqrt{1-(pV)^{2}}}$ = 1 *a* ∫ $\boldsymbol{0}$ *^hmax du* ■ and time: $t(p) = \int_{z_0}^{\infty} \frac{dz}{V\sqrt{1-(pV)^2}} = \frac{1}{a} \int_{0}^{\infty} \frac{du}{u\sqrt{1-u^2}} =$ *=* 1 $\left| \frac{1}{a} \ln \right| =$ *u* $\overline{1-\sqrt{1-u^2}}$. $z(u) =$ 1 *pa* $(u - u_0) =$ 1 *pa* $u + z_c$ \longrightarrow Denote The raypath is an *arc*: $(x - x_c)^2 + (z - z_c)^2 = \frac{1}{4}$ 1 *pa* 2 . the constants (centre of the circular ray path) *Parametric* representation of the (*x,z*,*t*) through *u*

GEOL483.3

Diving waves

Layers with low velocities and high velocity gradients create complex travel-time curves

