GEOL483.3

Geometrical

Seismics
Refraction

e Refraction paths
* Head waves
* Diving waves
o Effects of vertical velocity gradients

*Reading:
~ Sheriff and Geldart, Chapter 4.2 - 4.3.
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Snell's Law of
Refraction

@ When waves (rays) penetrate a medium with
different velocity, they refract, i.e. bend
toward or away from the normal to the
velocity boundary.

@ The Snell's Law of refraction relates the
angles of incidence and emergence of waves
refracted on a velocity contrast:

sini_sinr _sinf}; _sinf3,
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@ The constant p 1s
called ray
parameter

@ Note that
refraction angles
depend on the
velocities alone!
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Refraction in a stack of
horizontal layers

Ray :
parameter, p, '

uniquely
specifies the
entire ray.

It does not hSI 1\13 v,
depend on I ’
!

layer h
thicknesses or
velocities. h

Travel times Xs |
and distances
accumulate For any layer:  sini, = pV,
along the ray
to yield the ] = hy  _ hy

total T(X) © cosi, A




GEOL483.3

Critical Angle of
Refraction

Consider a faster medium overlain with a lower-
velocity layer (this is a typical case).

Critical angle of incidence in the slower layer is
such that the refracted waves (rays) travel
horizontally in the faster layer (sin r = 1)

The critical angles thus are:

for P-waves,

for S-waves.

* Critical ray parameter: el _ 1

vV

refractor

@ If the incident wave strikes the interface at an
angle exceeding the critical angle, no refracted or
head wave is generated.

» Note that /_ should better be viewed as a property
of the interface, not of a particular ray.
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Head wave

@ At critical incidence in the upper medium, a head
wave is generated in the lower one.

@ Although head waves carry very little energy, they are
useful approximation for interpreting seismic wave
propagation in the presence of strong velocity
contrasts.

@ Head waves are characterized by planar wavefronts
inclined at the critical angle in respect to the velocity
boundary. Their travel-time curves are straight lines:

t=t, 4
app
Here, t is the intercept time, and Vapp is the

apparent velocity.

Lower velocity material Head wave
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Relation between

reflection- and refraction
travel-times
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Critical and Cross-over |New!
distances vs. velocity

contrast
TN
4
-
2
-+
s [ 5
- o0
; 2
= 3
> 21 E
e j
s 2
“ ’ {éf’be Jl
e : : al 4. ’
r .
0L S— — —
0 1 3 5

ValV,

®  Note that the distances are proportional to the depth
and decrease with increasing velocity contrast across
the interface
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Travel times
(Horizontal refractor)

@ Direct wave:
X
t(x)==.
(x) v
® Head wave:

1]
P

this 1s also sin /
sini = pV, cosi =+/1-(pV, § f

r=2 i + plx —2h tani )= i (1—pl/lsini)+px—%cos;!+px

V, cosi V, cosi 14
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Travel times
(Multiple horizontal layers)

® pis the same
critical ray
parameter
for the bottom
(refracting)
interface;

0 to IS
accumulating

across the
layers:

For any layer:  sini, = pV,
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Travel times
(Dipping refractor)
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would change to '-' for up-dip shooting
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Hidden-Layer Problem

®  Velocity contrasts may not manifest

themselves in refraction (first-arrival) travel
times. Three typical cases:

Low-velocity layers;
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Reversed travel times

®  One needs reversed recording (in opposite
directions) for resolution of dips.

m The reciprocal times, T, must be the the same
for reversed shots.

®m Dipping refractor is indicated by:

+ Different apparent velocities (=1/p, TTC slopes)
in the two directions;

- determine V, and « (refractor velocity and dip).

+ Different intercept times.
- determine h_and h  (interface depths).

T

2z, cosi,

2z,cosi, |-
Vl
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Determination of
refractor velocity and dip

m Apparent velocity is Vapp = 1/p, where p

is the ray parameter (i.e., slope of the
travel-time curve).

* Apparent velocities are measured directly
from the observed TTCs;

» Vapp =V ... only for horizontal layering.
* For a dipping refractor:
R | V1 .
Down dip: Vd_SiIl(iC‘l‘O() (slower than V);
> Up-dip: V, (faster).
V. ==
Y osin(i,— o)

® From the two reversed apparent
velocities, i and « are determined:

v
. . -1 Y1 \% |4
i +ox=sin" —, iC:l(Sin_1—1+Sin_1—l),
Vi 2 v, v,
[,—x=sin 1 il u:—(sin_lh—sin_lﬁ)
il ] 27 v, v,
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New!

Approximation of
small refractor dip

® If refractor dip is small:

Vl . . A1 .
—=sin (i, +o)~sini_+xcosi_,
d

Vl . . 11 .
—=sin(i,—&)~sini_—oncosi_,

u

and therefore:

B Thus, the slowness of the refractor is
approximately the mean of the up-dip
and down-dip apparent slownesses.
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New!

Diving waves

®m Consider velocity gradually increasing
with depth: V(z).

® Rays will bend upward at any point
and eventually will return to the
surface

® Such waves are called diving waves.

® An implicit solution for the travel-time
curve (x,t) can be obtained from the
multiple-layer refraction formulas:

I ¢ pVi(z)dz
il 2{¢1—<pv<z>>2
((p)=2] - i

(2)V1—(

where h_'is the depth at which pV(h_)=1.
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New!

Diving waves

Linear increase of velocity with depth

m Consider: ¥Vz)=V +az.

a is generally between 0.3-1.3 1/s.
® Hence, denoting u=pV=sin i:

Parametric

representation I/l — f p V dZ 1 f udu | 3

of the (x,z,7) /
through u / p 1 Uy 1— u

—(H—M)E— 1—u’+x,

y Pd pa T
Z(Z/l): : (u u) Lu—I—Z Denote
pa v pa ] '\the constants
~ ((;entre of the
= The raypath is an arc: circular ray path)
2
<x—xc>2+<z—zc>2=(L |
pa p h
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Diving waves

Layers with low velocities and high velocity
gradients create complex travel-time curves

Triplication

GEOL483.3

New!

This is how
a “reflection”
develops from
diving waves
by steepening
velocity gradient

Triplication in the TTC

— i —
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