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Geol 483.3 

 

Lab project #4  

Analysis of a 2D refraction dataset from 2021 
Geophysics field school 

 

In this lab, you will analyze first-arrival travel times from one of the lines recorded during 

the Geophysics field school in 2021.  This was a small 3-D survey (about 100 m long) along the 

median of University Drive in Saskatoon using a fixed geophone spread using the 96-channel 

system we built three years ago. Coordinates were measured at a grid of survey points by GPS 

and interpolated to determine the locations of each geophone and source point.  

I performed the initial editing of the dataset. The complete dataset (also including two other 

lines) can be found in directory /data/morozov/Riverbank_2021_Refr/ on Linux 

computer named sura (sura.usask.ca). This computer is located on the right side of 

Geology room 135, and it is also available remotely. For this lab, you will need to use the SEGY 

(seismic data) file data_line02.sgy from this directory. A copy of this file is here and some 

Matlab/Octave codes are included in this archive file. I will update this file as we progress with 

the lab project. 

Refraction data analysis will consist of several steps: 

1) Loading the SEGY file into a commercial software package called TomoPlus by 

GeoTomo. This software is designed for analysis and inversion of near-surface seismic 

records. In this software, you will display the seismic line, examine its parameters, 

evaluate data quality, and try various types of filtering and display. 

2) Picking first arrivals in TomoPlus and exporting them into ASCII tables for Matlab. 

3) Plotting the travel times in several forms in Matlab; 

4) Inverting the first-arrival travel times using Matlab programs which we will develop 

during this lab. Methods of this inversion are outlined in section “Methods” below. 

Because of limited time remaining in this term, you may not achieve the complete inversion 

but you will still obtain intermediate results which will be useful for deriving a model of the 

shallow subsurface beneath the University Drive. 

Prior to starting this lab, you will need to set up your Linux account as on any of the Linux 

computers in room 135. The procedure is explained under link “Linux setup for labs” on the web 

site. You will only need to do this once. After this setup is complete, you should be able to login 

onto any of our machines and use it to run GeoTomo and other programs. Computer 

sura.usask.ca can be used remotely from on and off campus after performing the 

appropriate VPN setup. 

During and after this setup, you will need to learn about basic Unix shell commands:  

• pwd (print work directory),  

• cd (change directory),  

• ls (list file names),  

• mkdir (create directory),  

• cp (copy files), mv (move or rename files), rm (delete files)  

data_line02.sgy
lab4.zip
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• man (view manual about any command, with many options),  

• scp (secure copy of files or directories from any machine over the network) 

• more or less (display contents of text files), 

and other. 

Methods  

Inversion of first-arrival travel times consist in finding a model of the subsurface which 

would predict travel times for head waves close to those picked from the dataset. Below, I define 

the various components of this inversion. 

Model 

We will use a layered model of the subsurface in a delay time (sometimes also called “time 

term”) form. In this form, head wave delay times are used instead of the depths of the refracting 

boundaries. Between the boundaries, model velocities are constant vertically and smoothly 

variable horizontally. Thus, the n-th boundary (n = 1..Nb) is described by two smooth functions of 

the horizontal coordinate x: 

                            delay time ( )nt x  and slowness below the refractor pn(x). (1) 

The refractor depths are related to delay times as 
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where ( ) ( )1n nV x p x=  is the velocity above the refractor, and ( )1arcsinn n np V −=  is the 

critical angle for the refractor (this formula is simply an inverse of the expression for the delay 

time for a stack of layers we saw in class). These depths should be measured relative to some 

smooth datum surface. As the datum, we will select a smooth line below the minimum surface 

elevation. 

The uppermost near-surface layer (n = 0) also contains model parameters given in eq. (1). 

For this layer, function t0(x) has the meaning of delay time within a very thin near-surface layer, 

and p0(x) give the variations of the direct-wave velocity. 

For numerical inversion, the continuous functions and ( )nt x  and pn(x) need to be 

discretized. They can be discretized by selecting several control points (these points may be 

different for the depth-related functions ( )nt x  and for velocity-related functions. Between 

these points, the values of functions will be determined by interpolation. Interpolation of discrete 

points can be represented by summations: 
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where tni and pni are the model parameters at the discrete points, and i(x) is a “sawtooth”-shape 

basis function centered on the ith control point xi.  The numbers of control points Nt and Np can 

be different. Usually, Np (number of points at which the layer velocities are defined) is small (2 

to 5), although in the midpoint method described below, Np can be large. The number Nt controls 
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the detail of depth variation of the layers, and this number would usually be larger than Np. 

Thus, matrices tni and pni contain all parameters of the model we will need to invert for. If 

these parameters are known, the model can be plotted and all travel times can be predicted.   

Travel time prediction 

The complete predicted travel-time model that we will use for matching the observed travel 

times is 

             ( ) ( ) ( ) ( )pred rec elev elev model

0 0, ,n S Sn Rn S R n S Rt S R t t t t x t x t S R t t= + + + + + + + , (4) 

where S denotes the source, R denotes the receiver, and n is branch of the wave (direct or 

refracted on the nth boundary). In eq. (4): 

1)  
rec

St  is the reciprocal-time correction applied to each source (explained in the next 

subsection);  

2) Elevation-related terms 
elev

Snt  and 
elev

Rnt  representing additional delay times of the source 

and receiver locations due to their elevations relative to the datum:  
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3) Zero-offset time terms ( )0 St x  and ( )0 Rt x  due to a possible very low velocity, thin near-

surface layers. These terms are “surface consistent”, which means that they relate to the 

surface locations x only and are equal for source and receiver located at the same point. 

4) Term ( )model ,nt S R  is the travel time predicted by a layered subsurface model, with the 

source and receiver located on the datum; 

5) The last terms tS and tR account for small source- and receiver related travel-time 

variations which are not accounted for by the 2-D model. These terms are also described 

in the next subsections.  

For a given layer number n ≥ 0, the travel time ( )model ,nt S R from a source S to receiver R 

located on the datum surface is predicted by the delay-time relation: 

                              ( ) ( ) ( ) ( )model ,
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With n = 0, this equation gives the direct-wave travel times and with n > 0 – head wave travel 

times. Using eq. (3), the integral in this expression is transformed into a sum: 
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where ( ) ( ) ( ),i i S i Rg S R x x = +  and ( ) ( ),
R
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f S R x dx=  is an integral of the ith basis 

function along the source-receiver path. These integrals are easily calculated analytically using 

the known picewise-linear functions i(x), and so eq. (5) represents a matrix product and 
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summation which can be easily evaluated in Matlab. 

Inversion 

Inversion of the observed travel times consists in finding the subsurface model and the 

additional terms in eq. (4) so that ( ) ( )pred obs, ,nt S R t S R  in the least-squares sense. This 

inversion can be done in the order of terms shown in eq. (4), as described below. 

Correction of source times 

First, you will invert the mismatches of all reciprocal times for the source time 

errors.  For each source S1, consider all other sources S2 such that each of them has the travel 

times picked in the vicinity of the other source. Any velocity structure has the reciprocity 

property ( ) ( )model model

1 2 2 1, ,t S S t S S= , and therefore the difference of these reciprocal travel 

times equals  

                                           ( )
1 2

rec rec reciprocal

1 2,S St t t S S− =  , (6) 

where ( ) ( ) ( )reciprocal obs obs

1 2 1 2 2 1, , ,t S S t S S t S S = −  is the difference between the observed 

travel times for the two shots. This is a linear inverse problem for 
rec

St , which can be solved by 

the least-squares method. 

When inverting eq. (6), you will notice that the inverse is nonunique because this equation 

allows adding an arbitrary constant to all 
rec

St . This problem is easily corrected by adding an 

additional constraint to the system of equations (6). The constraint can be setting 
rec 0St =  for one 

shot or requiring that the average of all 
rec

St  equals zero: 
rec 0S

S

t = . 

Ideally, ( )reciprocal

1 2,t S S should equal zero and therefore all 
rec 0St = . However, as 

( )reciprocal

1 2, 0t S S   in the real data, inversion of eq. (6) gives the source times 
rec

St correcting 

for this error. These terms should then be subtracted from the data: 

                                           ( ) ( )obs obs rec

corrected
reciprocity

, , St S R t S R t= − , (7) 

giving corrected input data for further inversion, which are free of reciprocal travel-time 

mismatches. 

Inversion for subsurface model 

The next two steps of inversion consist in obtaining the subsurface model (parameters 

( )0t x and tni and pni in the preceding section). For this, it is useful to view the first-arrival travel 

times as samples of a continuous “time field” (TTF) function ( ),S RT x x  of continuously variable 

source and receiver coordinates xS and xR. The corrected observed picks (eq. (7)) represent 

sampling of this function at the available source and receiver pairs. For the subsequent plotting, 

data analysis and inversion, it is convenient to grid this function on a regular grid of midpoint 

coordinates 
2

S R
mp

x x
x

+
= and (signed) source-receiver distances R Sd x x= − . This gridding can 
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be easily performed by using the Delaunay triangulation using function griddata in Matlab, 

and the result will be a matrix ( ), mpT d x  with columns representing the common-midpoint travel 

times and rows representing the common-offset travel times.  

To obtain a subsurface model, you will need to set the number of layers and obtain t0(x) 

and slownesses pni first. Consider the common-midpoint travel time profiles ( ), mpT d x  at each of 

the selected control points 
mp ix x= i. By plotting this T as a function of offset d, a first-arrival 

travel-time dependence can be recognized and interpreted. By identifying several linear segments 

and crossover points, crossover points, the number of layers can be determined at the given 

location xi. Slopes of these segments give the slownesses within these layers (pni in eq. (5)), and 

the intercept of the first segment (at d = 0) gives the time ( )0 mpt x  in eq. (4). 

Once parameters ( )0 mpt x  and pni are estimated, the elevation-related terms 
elev

Snt  and 
elev

Rnt  in 

eq. (4) can be calculated and subtracted from the data. This subtraction should reduce the scatter 

of the travel times due to elevation variations and improve the identification of slownesses pni 

Therefore, the evaluation of the elevation of 
elev

Snt  and 
elev

Rnt and estimation of pni should be iterated 

a couple times until these values become consistent.  

During the estimation of the number of layers (refracting boundaries) Nb and slownesses pni, 

the crossover distances for the refractions will also be determined. These distances can be used 

for partitioning of travel-time dataset into segments corresponding to direct waves (value of 

n = 0) and head waves from different boundaries (n ≥ 1). 

Using the identified layer slownesses, the delay times for the refracting boundaries can be 

obtained by correcting the observed times for all of the above effects and solving the linear 

inverse problem in eq. (5): 
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where the corrected data are  

           ( ) ( ) ( ) ( ) ( )obs obs rec elev elev

corr 0 0

1

, , ,
N

S Sn Rn S R ni i
n i

t S R t S R t t t t x t x p f S R
=

 
= − + + + + + 

 
 . (9) 

Equation (8) is also an overdetermined linear inverse problem for unknowns tni, which is 

readily amenable to the least-squares inverse. 

Residual travel-time terms 

After all “surface-consistent” model-related terms in the right-hand side of eq. (4) are 

inverted for, the “residual” terms tS and tR terms can be obtained. These terms are also obtained 

from a linear inverse problem: 

                                                   ( )error , S Rt S R t t + , (10) 

where 
obs obs

error corr modelt t t= −  is the total error of the travel-time prediction by the final model.  

Equation (10) can also be solved by the least-squares inversion. However, as its forward model 

(right-hand side) is very simple, it can be easily solved even in a better approximation. Let us use 

the median (statistical) inverse: 
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                      ( )error ,S S
t median t S R =

 
,  and   ( )error ,R R

t median t S R =
 

, (11) 

where the notation 
 or S R

median t 
 means evaluation of the median of all values t over all travel-

time picks for the given source S, or for the given receiver R. 

Assignments 

1) Create a work directory under path /data/ on sura. Use ‘cd /data/’ and then mkdir 

followed by your username. Then ‘cd’ to that directory. In the following, place all files 

and work only in this directory. You can create any subdirectories or files in there. In 

particular, when you start using GeoTomo, place its project into this directory. 

2) Start GeoTomo (TomoPlus) programs by typing geotomo in a Unix shell. In 

GeoTomo, create a project and load file data_line02.sgy in it.  

Familiarize yourself with SEGY headers in the file, display geometry of the data.   

Create seismic displays and evaluate the quality of data records. There are a number 

of poorly recorded records, and channels 1 and 93-96 were disconnected. This data 

quality is normal.  You need to ignore the poor records or exclude them by marking as 

bad or ‘killed’ records. 

The different shots in the records will be identified by different “field file identifiers” 

(FFID), which are called (I think) Shot ID in GeoTomo. The individual trace records are 

identified by their channel numbers used in the recording instrument. 

Identify the first arrivals in the records. 

3) Select display form (time range, frequency filtering, AGC, wiggle-trace or variable-

intensity color style) and perform picking of the first-arrival travel times. This will 

have to be done manually, but you can also explore the available automatic picking 

options.  

Try picking the different FFIDs consistently, i.e, pick the zero crossings from the first 

negative trace swing to the large positive amplitude peak. This may not always be 

possible to do, so only pick the records where such identification can be made. In 

GeoTomo, there should be options for automatic snapping of the manual pick to the 

nearest zero crossing, and also for picking groups of adjacent traces. 

To help ensuring picking consistency for different FFIDs, try switching between the shot 

display (usually the default) and common-midpoint and common-receiver display modes. 

In these displays, traces from different FFIDs are shown side by side, and it is therefore 

easy to see whether the same wave is being picked on them. 

4) After the picks (or maybe a representative sample) are completed, display them in 

GeoTomo and evaluate the travel-time patterns. Identify the direct waves, refractions 

(head waves), and roughly estimate the cross-over distances.  

5) Export the first-arrival picks into an ASCII format and prepare them for further 

processing in Matlab or GNU Octave. 

The preparation may require commenting out (by using symbols ‘%’) certain header lines 

so that the resulting files can be loaded using function load() in Matlab. Alternatively, 
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the pick files can be edited to include names of variables and represent parts of a Matlab 

program. 

The following tasks are performed in Matlab using codes provided in this archive file. 

These programs are work in progress, and so please exercise patience and try 

understanding what is being done.  

The different steps of processing are split into two scripts: 

• lab4_pass1.m  performing loading the data from GeoTomo file, creating 

geometry, correcting a couple errors found in the data, and performing the 

reciprocal time analysis and inversion; 

• lab4_pass2.m performing semi-interactive analysis of the travel time and 

obtaining estimates of the near-surface velocities and delay times (at present, 

velocities in the deeper layers are unavailable.) 

Execute lab4_pass1.m , look and generally understand the resulting plots (not very 

well labeled, sorry), then execute lab4_pass2.m . This script will produce Figures 5 

and 6 with travel times from selected sources and midpoints. Looking at these plots, you 

will need to adjust the values of columns in matrix model.crossover to represent the 

offsets at which you estimate the crossover distances at the various locations within the 

profile. 

Then, repeat the travel-time plots at the end of lab4_pass2.m with different selections 

of midpoints and make more adjustments in model.crossover. 

After the picking of crossover distances is finished, re-run lab4_pass1.m and 

lab4_pass2.m for the cross-over picks to take effect. In the following steps, use plots 

produced by these scripts. 

6) Plot the first-arrival times from all shots in Matlab, in the form similar to the T-X 

displays in GeoTomo. This is done by Figure 4 produced by plot_ttimes() in 

lab4_pass1.m. You can also call this function directly. 

7) In Matlab, extract all reciprocal-time mismatches and evaluate the source time 

corrections as described in and after eq. (6). This result is shown in Figure 7 from 
lab4_pass1.m. 

Check whether these corrections are anomalously high for some shots, and whether these 

shots may need to be repicked. 

Apply these corrections to the picked travel times by using eq. (7). This result is shown in 

Figure 7 produced by lab4_pass1.m. 

8) Transform the reciprocity-corrected picked times into a continuous gridded travel-

time field (TTF) in the plane of (midpoint_coordinate, source_receiver_distance). This 

can be done separately, by calling function ttf(). Use help ttf to see the 

description of this function. This function will take the desired offset increment and 

maximum offset and return three matrices: the TTF, its mapping into the direct-wave and 

head-wave branches, and the grid of offsets values used.   

Using the se outputs of ttf(), display the gridded travel-time field surface in one or 

several ways: in color using imagesc(), or contour it using contour(), or display in 

3D using  plot3().  

lab4.zip
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To clearer see the different branches of the observed TTF, it should be convenient to 

calculate and plot the “reduced” TTF by using relation: 

                                                        ( ) ( )obs obs, ,r mp mp rT d x T d x p d= − , (12) 

where pr is the reduction slowness (and 1r rV p=  is called the reduction velocity). Try 

several values of pr. If pr is selected close to the value of p for some boundary, the 

refraction from this boundary would appear as near-horizontal on the graph of ( )obs

rT d , 

and it would look as a zone of a constant color contrasting with other areas in a color plot 

of ( )obs

rT d . 

Inspect the results. Try identifying the zero-offset times t0 (at the axis d = 0 of the plots), 

crossover distances, and the direct-wave and (maybe several) head-wave branches of the 

travel-time field.  These branches will be seen as areas of areas of near-constant values of 

( )obs ,r mpT d x  in the reduced-TTF plots, when pr is selected close to the actual moveout of 

the refractor. 

 

9) We will likely stop at this point in this term!   

Plot the intercept values and report the slownesses of the uppermost layer. This is 

done in Figure 2 (produced by function plot_model()in both scripts). 

Compare the delay times to the surface elevation (in the same Figure). 

10) Define several control points (midpoints) for the evaluation of layer slownesses and 

extract from ( ), mpT d x  offset-dependent, common-midpoint travel time curves. 

Plot the common-midpoint travel-time curves. Identify the travel-time branches, 

measure t0 (intercept of the direct-wave branch) and intercepts and slownesses pni for 

direct wave and head wave branches. From these intercepts and slownesses, calculate the 

cross-over distances for each of the head wave branches. 

 

11) Define another (or use the same) grid of control points for delay times tni. Using the 

inverted slownesses pni at the slowness control points, solve eqs. (8) for delay times at 

the control points.  

Make sure to apply the zero-offset and elevation corrections, and iterations described in 

“Methods”.  

Transform the inverted tni into boundary depths using eq. (2). 

12)  Plot and discuss the model. 

 

Hand in:  

Codes, plots, and report in electronic format. 

  

 


