Geometrical Seismics Basic concepts of Reflection imaging

- Normal moveout (NMO)
- Normal moveout correction
- Dip moveout (DMO)
- Reading:
 - Sheriff and Geldart, Chapter 4.1

GEOL483. 3

Zero-Offset Section

(Ideal picture and of reflection imaging and the goal of "CMP stacking")

- The Ideal of reflection imaging (if not talking about AVO) consists in *sources* and receivers *collocated* on a flat horizontal surface ("*datum*")
- However, in reality, we record at finite sourcereceiver offsets, over complex topography, and in complex nearsurface structure.

- In the "CMP stacking"-type imaging, two types of corrections are applied to compensate these factors:
 - Statics "place" sources and receivers onto the datum;
 - Normal Moveout Corrections "transforms" the records into as if they were recorded at collocated sources and receivers.
- As a result of these corrections (plus stacking to attenuate noise), we obtain a stacked zero-offset section
- Another type of imaging is "pre-stack", which obtains the final image directly from the full source-receiver geometry

Normal moveout

- Symmetric hyperbola
- Reflected rays propagate as if from a source at depth

Normal moveout

- The NMO hyperbola can be approximated by a parabola
 - Works for small reflection angles (up to about 30°):

$$t(x) = \sqrt{t_0^2 + \left(\frac{x}{V}\right)^2} = t_0 \sqrt{1 + \left(\frac{x}{t_0 V}\right)^2} \approx t_0 \left[1 + \frac{1}{2} \left(\frac{x}{t_0 V}\right)^2\right] = t_0 + \frac{1}{2t_0} \frac{x^2}{V^2}$$

Quadratic function -> parabola in the (*x*,*t*) plane

• To understand this and other formulas below, not that for small $\alpha << 1$:

$$(1+\alpha)^n \approx 1+n\alpha$$

Reflection travel-times (*Multiple layers*)

• For multiple layers, t(x) is no longer hyperbolic:

For practical applications (near-vertical incidence, pV_i<<1), t(x) still can be approximated as:</p>

$$x_{n}(p) = \sum_{i=1}^{n} \frac{h_{i} p V_{i}}{\sqrt{1 - (pV_{i})^{2}}} \approx p \sum_{i=1}^{n} h_{i} V_{i} \left[1 + \frac{1}{2} (pV_{i})^{2} \right] \approx p \sum_{i=1}^{n} h_{i} V_{i}$$

hence:

$$t_{n}(p) = \sum_{i=1}^{n} \frac{h_{i}V_{i}}{V_{i}\sqrt{1 - (pV_{i})^{2}}} \approx \sum_{i=1}^{n} \frac{h_{i}}{V_{i}} \left[1 + \frac{1}{2}(pV_{i})^{2}\right] = t_{0} + \frac{1}{2}p^{2}\sum_{i=1}^{n} h_{i}V_{i}$$

$$t_n(x) \approx t_0 + \frac{1}{2t_0} \left(\frac{x}{V_{RMS}} \right)$$

 $p = \frac{x_n(p)}{n}$

here, V_{RMS} is the RMS (root-mean-square) velocity:

GEOL483. 3

Normal Moveout (NMO) correction

NMO correction transforms a reflection record at offset x into a normal-incidence (x = 0) record:

$$t(x) \rightarrow t_0 = \sqrt{t^2(x) - \left(\frac{x}{V}\right)^2} \approx t(x) - \frac{1}{2t(x)} \left(\frac{x}{V}\right)^2$$

"Stacking velocity"

- Stacking velocity is determined from the data, as a parameter of the reflection hyperbola that is best aligned with the reflection event
- Note that NMO correction affects the shallower and slower reflections stronger
 - This is called "NMO stretching"

Dipping reflector

- Hyperbola of the same shape but with the apex shifted up-dip
- Asymptotically the same moveouts

Dip moveout

• For small offsets ($x \ll h$) and dips ($h \sin \xi \ll x$):

• Reflector dip ξ can be measured from the *dip moveout*:

$$\sin \xi \approx \frac{V}{2} \frac{t(x) - t(-x)}{x} \equiv \frac{V}{2} \underbrace{t_{Downdip} - t_{Updip}}_{x} \qquad \text{This ratio is also called}_{Dip Moveout}$$

Dip moveout in CMP gathers

- The travel-time hyperbola becomes symmetrical
- Reflection points are *smeared* up-dip with increasing offset
- Asymptotic velocities *are greater* than the true velocity

Stacking velocity in the presence of dip

 For a fixed x_m, the dependence of the S-R time on the offset x is

$$t(x) = \frac{1}{V} \sqrt{(x + 2h\sin\xi)^2 + (2h\cos\xi)^2}$$

$$t(x) = \frac{1}{V} \sqrt{[x + (2x_m - x)\sin^2\xi]^2 + [(2x_m - x)\sin\xi\cos\xi]^2}$$

$$t(x) = \frac{1}{V} \sqrt{(2x_m\sin\xi)^2 + (x\cos\xi)^2}$$

continued...

CMP Stacking velocity in the presence of dip (cont.)

This equation describes a hyperbola similar to the NMO equation (compare to:

 $t_{NMO}\left(x\right) = \sqrt{t_0^2 + \left(\frac{x}{V}\right)^2} \quad):$

Thus, because of the dip, the effective velocity is increased:

$$V_{Dip} = \frac{V}{\cos \xi}$$

- This means that when stacking velocities are measured from a CMP gather, dipping reflectors will result in higher velocities (flatter reflection hyperbola)
- As a result, reflectors with conflicting dips cannot be NMO-corrected and stacked accurately.
 - Processing step called *DMO* (dip moveout correction) corrects this problem. We will talk about this method in the next lectures