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Time and Spatial Series 

and Transforms

Z- and Fourier transforms

Gibbs' phenomenon

Transforms and linear algebra

Wavelet transforms

Reading:

➢ Sheriff and Geldart, Chapter 15
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Z-Transform

Consider a discretized record of N readings: 

U={u0, u1, u2, …, uN-1}. How can we represent this 
series differently?

The Z transform simply associates with this time 

series a polynomial function:

For example, a 3-sample record of {1,2,5} is 

represented  by a quadratic polynomial:

1 + 2z + 5z2.

In Z-domain, the all-important operation of 

convolution of time series becomes simple 

multiplication of their Z-transforms:
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Fourier Transform

To describe a polynomial function of order N-1, it 

is sufficient to specify its values at N points in the 
plane of complex variable “z”

The Discrete Fourier transform is obtained by 
taking the Z-transform at N points uniformly 

distributed around a unit circle on the complex 
plane of z:

Each term (k>0) in the sum above is a periodic 

function (a combination of sin and cos), with a 

period of N/k sampling intervals:

Thus, the Fourier transform expresses the signal 

as a sum of its frequency components,

Fourier transform also has the property of the Z-

transform regarding convolution
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Matrix form of
Fourier Transform

Note that the Fourier transform can be written as 

matrix multiplication:
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Inverse:
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Resolution of
Fourier Transform

Resolution matrix:

1

F = −
R F F

If all N frequencies are used to reproduce the 

Fourier-transformed signal, the recovery is 
accurate:

F =R I

If fewer than N frequencies are used for 

recovering the signal (Gibbs phenomenon), the 
resolution is incomplete:

F R I

New!
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Integral Fourier Transform

◼ For continuous time and frequency (infinitesimal 

sampling interval and infinite recording time), 
Fourier transform reads:

Forward:

Inverse:

◼ In practice, the bandwidth (and time) is always 
limited, and so the actual combination of the 

forward and inverse transforms is rather: 
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Gibbs' phenomenon

◼ At a discontinuity, application of the Fourier forward 

and inverse transform (with a limited bandwidth), 
results in ringing.

◼ This is important for constructing time and 

frequency windows

Boxcar windows create ringing at their edges.

“Hanning” (cosine) windows are often used to 
reduce ringing: 
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Spectra of Pulses

For a pulse of width T s, its spectrum is about 1/T

Hz in width:

Equal-amplitude (co)sinusoids from 0 to f
N

add up 

to form a spike:
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Compare the transforms within the boxes...

sinc(at/2)

e-ktstep(t) e-k|t|

te-ktstep(t)

d(t) d(t-t
0
)

e-k(t-t0)step(t-t
0
)



GEOL882.3GEOL483.
3

Wavelet transforms 

Like the inverse Fourier transform,

wavelet decomposition represents the time-domain 

signal by a combination of wavelets of some 

desired shapes:
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Wavelet shapes Wavelet amplitudes

Ideally, wavelets should form a complete 

orthonormal basis:

although this is not always necessary
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used in 

Fourier transforms
satisfy this property

Usually, functions f(t) represent time-scaled and 

shifted versions of some “wavelet” W(t)
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