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Time and Spatial Series
and Transforms

» Z- and Fourier transforms
Gibbs' phenomenon

[ ]

» Transforms and linear algebra
» Wavelet transforms

» Reading:
- Sheriff and Geldart, Chapter 15
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Z-Transform

» Consider a discretized record of N readings:
U={u,, u,, U,, ..., Uy} HoOw can we represent this
series differently?

» The Z transform simply associates with this time
series a polynomial function:

(U} U (2)=Uy+Uz+U,2° +U,7° +...

+ For example, a 3-sample record of {1,2,5} is
represented by a quadratic polynomial:

1+ 2z + 522
o In Z-domain, the all-important operation of

convolution of time series becomes simple
multiplication of their Z-transforms:

u, (t)=u, (t) > U, (2)U,(z)
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Fourier Transform
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To describe a polynomial function of order N-1, it
is sufficient to specify its values at N points in the
plane of complex variable “z”

The Discrete Fourier transform is obtained by
taking the Z-transform at N points uniformly
distributed around a unit circle on the complex
plane of z:

N-1 .27k
Uk)=>eN u(t,) k=012..,N-1
m=1

Each term (k>0) in the sum above is a periodic
function (a combination of sin and cos), with a
period of N/k sampling intervals:

e'“ =cos(a)+isin(a)

Thus, the Fourier transform expresses the signal
as a sum of its frequency components,

+ Fourier transform also has the property of the Z-
transform regarding convolution
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New!

Matrix form of
Fourier Transform

» Note that the Fourier transform can be written as
matrix multiplication:

U(e) u(t)
U(e,) u(t,)
U(ay) | | u(t)

» Inverse:

it —iwot —iwat
ewu ew21 ew31

FT 1 e—ia)ltz e_ia)ztz e—ia)3t2
N N e—ia)lt3 e—iw2t3 e—ia)3t3
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New!

Resolution of
Fourier Transform

» Resolution matrix:
R, =F'F

« If all N frequencies are used to reproduce the
Fourier-transformed signal, the recovery is
accurate:

R. =1

« If fewer than N frequencies are used for
recovering the signal (Gibbs phenomenon), the
resolution is incomplete:

R. =
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New!

Integral Fourier Transform

m For continuous time and frequency (infinitesimal
sampling interval and infinite recording time),
Fourier transform reads:

» Forward: U(w)= % J dtu (t)ei“’t
T

s Inverse:

u(t):%]ida)u (o)™

m In practice, the bandwidth (and time) is always
limited, and so the actual combination of the
forward and inverse transforms is rather:

1 o i ot | o-l0
uband-limited(t)zz_ _[ dw[jdw(f)e }e |

1 ~ O
1 ( " lo(t-r
Uben-fimited (t) H Z j dru (T) J dwe (t-7)
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New!

Gibbs' phenomenon

At a discontinuity, application of the Fourier forward
and inverse transform (with a limited bandwidth),
results in ringing.

Note the ~9% “overshoot”

. at the top and the bottom

Step function is ol LN
reproduced with
~18% amplitude
distortion
and ripples
on each side

0.5

e . L —
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This is important for constructing time and
frequency windows

o Boxcar windows create ringing at their edges.

“"Hanning” (cosine) windows are often used to
reduce ringing:
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Spectra of Pulses
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e For a pulse of width T s, its spectrum is about 1/T
Hz in width:
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» Equal-amplitude (co)sinusoids from 0 to f, add up

to form a spike: Spike
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Sample Fourier Transforms
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@ Compare the transforms within the boxes...
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New!

Wavelet transforms

» Like the inverse Fourier transform,

wavelet decomposition represents the time-domain
signal by a combination of wavelets of some
desired shapes:

ut)) [t f,(t) ft) .. &
u(t,
(

L

)|
)

u

‘ Wavelet shapes }_f ‘ Wavelet amplitudes

» Ideally, wavelets should form a complete
orthonormal basis:

N-1 -
1 exp(...) functions
Z fi (tk) fj (tk ) 1 5ij used in
k=0 Fourier transforms
satisfy this property

although this is not always necessary

« Usually, functions f(t) represent time-scaled and
shifted versions of some “wavelet” W(t)



