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Tomography and 
Location

In this lecture, we discuss several aspects of 
the very general problem of INVERSION, based 
on examples of cross-well seismic travel-time 

tomography and earthquake location

Forward and Inverse travel-time problems

Seismic tomography

Generalised Linear Inverse

Least Squares inverse

Regularized, weighed, smoothed

Iterative inverse

Back-projection method 

Resolution

Statistical testing of results

Location of seismic sources

Data norms

Reading:

Shearer, 5.6-5.7
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Seismic (velocity) 
tomography

Tomography

The name derived from the Greek for 
“section drawing” - the idea is that the 
section appears almost automatically... 

Using multitude of source-receiver pairs 
with rays crossing the area of interest.

Looking for an unknown velocity structure. 

Depending on the type of recording used, it 
could be:

• Transmission tomography (nearly straight 
rays between boreholes);

• Reflection tomography (reflected rays; in this 
case, positions of the reflectors could be also 
found);

• Diffraction tomography (using least-time 
travel paths according to Fermat rather than 
Snell's law; this is actually more a waveform 
inversion technique).
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Cross-well tomography

Consider the case of transmission “cross-well” 
tomography

This is the simplest case – rays may be 
considered nearly straight, the data are 
abundant, and the coverage is relatively 
uniform
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These are the three principal 
concerns in tomography: 

1) linearity of the problem;

2) density of data coverage;

3) good azimuthal coverage.
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Principle of travel-time 
tomography

Velocity perturbations are considered as small

Therefore, rays are approximated as straight

Each velocity cell      leads to characteristic 
travel-time variations at the receivers 
(“impulse response”)

These are inverted for velocity value at  
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Travel-time inversion
as a linear inverse problem

First, we parameterize 
the velocity model

Typically, the 
parameterization is a 
grid of constant-velocity 
blocks (sometimes 
continuous spline 
functions are used 
instead of the blocks).

This parameterization 
gives us a model vector, 

m, consisting of 

slownesses in each cell:

model

1
1

2
2

1

1

1
N

N

s
V

s
V

s
V

 =
 
 

= 
=  
 
 

= 
 

m

Second, we measure all 
available travel times and 
arrange them into a single 
data vector:
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Forward model

Third, we formulate the forward model to 

predict d from m. To achieve this, we need 

to trace rays through the model and 
measure the length of every ray's segment 
in each model block, L

ij
.

The travel time for i-th ray is then:
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Note that the expression 

is non-linear in V but linear 

in s (slowness).
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Generalized Linear 
Inverse

The model for travel times:                     
can be written in matrix form:

Now, we want to substitute d = dobserved and 
solve for unknown m. This is called the
inverse problem

Typically, matrix L is not invertible (it is not 
square), and so it is inverted in some 
generalized (averaged, approximate) sense

Any solution in the linear form

is called the generalized linear inverse.

The key idea of generalized inverse is that 
model m is sought as a linear combination 
(matrix product) of data values) (dobserved, 
travel times in our case)

The key problem is thus in finding a suitable 
form for L

g
-1

i ij j

j

t L s=

=d Lm

-1 observed

g=m L d
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Projection into  
model space

Tomography problems are typically 
overdetermined (contain many more ray 
paths than grid model blocks) 

In such cases, the following approach to 
constructing L

g
-1 works well:

multiply on the left by transposed LT: 

The matrix LTL is square and often invertible 

By inverting matrix LTL, we find solution 
giving m is a product of data d with a matrix:

observedT T=L d L Lm

( )
-1

observedT= T
m L L L d

This is the 
“least-squares” solution

 It is used 

in the 
well-known GLI3D 

program

 for refraction
statics

This operation “back-
projects” the 

redundant data onto 
model space
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Least Squares Inverse

Note that the solution is a linear 
combination of data values: 

The reason for its name of “Least Squares” 
is in minimizing the mean square of data 
misfit function F(m): 

Exercise: show this! 

Hints:

1) Write the misfit above in subscript form, as function 
of multiple variables mi:

2) Write equations for minimizing the misfit:

3) Present these equations back in matrix form.

( )
-1

observed -1 observed

g= T T
m L L L d = L d

( ) ( ) ( )observed
T

F − −observed
m = d Lm d Lm

( )
-1

-1 T

g

T
L = L L L

This is the generalized inverse 
for LEAST SQUARES method

( ) ( )( )observed observed

i ij j i ik kd L m d L mF − −m =

0
lm

F
=

Summations 
over 

repeated 
indices 
implied!
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Damped Least Squares

Sometimes the matrix LTL is singular and its 
inverse does not exist or unstable.

This happens, e.g., when:

1) Some model cells are not crossed by any rays, or 

2) There are groups of cells traversed by the same rays 
only.  

In such cases, the inversion can be regularized by 
adding a small positive diagonal term to LTL:

This is also a generalized inverse. This form of 
inverse is called the Damped Least Squares
solution.

In this solution, e is chosen such that stability 
is achieved and the non-zero contributions in 
LTL are affected only slightly.

( ) observedTe= +
-1

T
m L L I L d
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Weighted Least Squares

Often, different types of data are included in d

◼ For example, different travel times, t
i
, may be 

measured with different uncertainties dt
i

In such cases, it is useful to apply weights to the 
equations:

where W is a diagonal weight matrix:

Wd = WLm

1 2 3

1 1 1
diag , , ,...

t t td d d

 
=  

 
W

This weight matrix simply means that each 

equation for travel time ti is multiplied by 1/dti. As a 
result uncertainties of scaled data in each 
equations become equal 1, and they should have 
equal contributions to the resulting model

-1 observed

g=m L d
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Weighted Least 
Squares (cont.)

This corresponds to a modified least-squares 
misfit function: 

and solution:

( ) ( ) ( )observed observed
T

T=F − −m d Lm W W d Lm

-1 observed

gm = L d

( )
-1

-1 T T T

g e+L = L W WL I L W
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Smoothness constraints

When using finely-sampled models...

some cells may be poorly constrained;

solutions can become 'rough' (highly variable, 
noisy – see below)

To remove roughness, additional 'smoothness 
constraint' equations can be added

These equations will be additional rows in L, for 
example:

Zero Laplacian:

These equations must be used with small weights
w, which are often tricky to select

( )Average_of_some_adjacent_points_i jm m=

2 0im =

This equation makes the inverse favor models in which 
model slowness mi is close to adjacent points 

2 2 2
2

2 2 2

f f f
f

x y z

  
  + +

  

Recall that Laplacian of a 
function is the sum of second 
derivatives. These  derivatives 
are small in a smooth model:
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Simple Iterative Inverse

Sometimes matrix LTL is also too large to invert, or 
even to store

It can the be approximated by its diagonal:

The diagonal only contains one value per model cell (sum of 
squared distances for all rays crossing it)

Contributions to m can be evaluated during a pass through all 
data and without storing matrices L or LTL

Variants of this method are known as:

Back-projection method;

SIRT (Simultaneous Iterative Reconstruction 
technique)

ART (Algebraic Reconstruction Technique)

( )
1

observeddiag T Tm e
−

 = +
 

L L I L d
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Simple Iterative Inverse 
(how it works)

Iteration to reduce data error:
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1 1gd d−=m L d

observed

1 0d = −d d d

1

2 2gd d−=m L d

2 1 1δ Ld d= −d d m

...

Travel times 

in “background model”

For each ray,

the observed travel-time 

perturbation 

is thus “back-projected”

into the slownness model

Approximate inverse 

of any kind
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Resolution matrix

For any form of the inverse, assessment of the 
quality of inversion method is often done by using 
the Resolution Matrix:

The resolution matrix can be understood like this:

1) To obtain jth column of the resolution matrix, perturb jth

parameter (slowness value) of a zero model by a unit 
value (e.g., 1 s/m for slowness). Let us denote this 
perturbed model

2) Perform forward modeling (generate synthetic data);

3) Perform the inverse. The result of this inversion will be

This is the jth column of matrix R.

Thus, jth column in matrix R shows how the jth cell is 
reproduced by the inversion. Ideally, cell j should be 
reproduced perfectly (with value Rjj = 1), and other Rij

should equal zero (cell j should not be misrepresented as 
different “i” after inversion).

Note that R does not depend on data values but depends 
on sampling (matrix L)

-1

g=R L L

 reproduced -1

test test test

j j j

g= =m L Lm Rm

test

j
m
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Checkerboard 
resolution test

Test of the resolution in the model when 
computation of the Resolution Matrix is impossible 
or impractical

Method:

Create an artificial model perturbation in the 
form of alternating positive and negative 
anomalies (“checkerboard”)

Predict the data in this model:

Invert the resulting synthetic data:

Compare the result to the input model

• The ability to reproduce the input “checker” 
anomalies indicates the quality of inversion

• This quality varies within different parts of the 
model

checker
 =d Lm

1 1

checkerg g

− − = =m L d L Lm
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Checkerboard 
resolution test (cont.)

Schematic example from travel-time tomography:
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Trade-off between data 
fit and model simplicity

Too simple models often cannot explain the data

However, excessively detailed models are also not 
good:

They can “over-fit” the data (fit travel times too 
much, better than warranted by errors in picking the 
times) 

Model complexity may be spurious and caused by 
data noise

We need to look for “optimally” complex models

Too few model parameters

Too many 
model 

parameters
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Test for statistical 
significance of data fitting 

How can we verify that the model fits the data 
within reasonable error?

Complex models (with large numbers of 
unknowns) would often fit the data well;

Because the data contains noise, we should not 
over-fit the data!

The c2 test is commonly used to determine whether 
the remaining data misfit is likely to be random:

Here, s is the estimated data-measurement 
uncertainty

This uncertainty needs to be somehow 
measured from the data, prior to inversion (see 
eq. 5.31 in Shearer) 
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c2 test (cont.)

The p.d.f. of c2 is controlled by the “number of data 
degrees of freedom” in the model:

this value means the number of travel times (constraints) not 
already satisfied by solving for model parameters 

For a given N
df
, tabulated percentage points of 

p.d.f.(c2) can be used to determine whether the 
residual data misfit is likely to be random:

.

The 95-% level is commonly used

df travel times model parametersN N N= −

Ndf At 5% At 50% At 95%

5 1.15 4.35 11.07

10 3.94 9.34 18.31

20 10.85 19.34 31.41

50 34.76 49.33 67.5

100 77.03 99.33 124.34
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c2 test (cont.)

Here is how the c2 test is conducted (see lab #2):

1) Estimate measurement error s for your data (travel 
times);

2) For a given model, calculate data errors (data minus 
data predicted by the model);

3) Divide the errors by s, square, and sum to produce 
the c2 quantity (“statistic”);

4) Determine Ndf;

5) For this Ndf, look up in the table on the preceding 
slide the expected value of c2 at 95% confidence. Let 
us denote this value        .

6) Check how your c2 from the data and model 
compares to        :

❑ If                , your model poorly explains data; you 
need to increase the detail in the model;

❑ If                , the model is overfitted and likely 
“rough”. Reduce model detail.

❑ If                by not much, the model is good, and the 
errors are random (with 95% confidence).    

2

95%c
2 2

95%c c

2 2

95%c c

2 2

95%c c

2

95%c
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Source Location Problem

When using a natural (impulsive) source, its 
location can also be determined by a similar 
approach.  

This method is used for locating  earthquakes 
worldwide 

For monitoring creep of mine walls (potash 
exploration)

Monitoring reservoirs during injection  
(Weyburn)

1 1

2 2

1/

1/

...

1/N N

source

source

source

s V

s V

= s V .

x

z

t

= 
 

= 
 
 

= 
 
 
 
 
 

m

(In two dimensions)

To solve this problem, we:

Start from some 
reasonable approximation 
for source coordinates and 
solve the velocity 
tomography problem.

Include the coordinates 
and time of the source in 

model vector m:
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Source Location (cont.)

Include into the matrix L time delays 

associated with shifting the source by dx or dz:

Now, when solved, the Generalized Inverse  will 
yield the corrections to the location (dx, dz).

This process is iterated: with the new source 
location, velocities are recomputed, and 
sources relocated again, etc.

Iterations are needed because ray shapes 
change after we shift the source and modify 
velocities (rays are not straight!) 

Ray #i

dx

dz

, 1

cos
i Nt x L x

V


d d d+

−
= 

, 2

sin
i Nt z L z

V


d d d+

−
= 
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Measures of data misfit 
(“data norms”)

The Least-Squares norm (called “L2”) can be 
highly sensitive to data outliers:

• However, it is the easiest to use (only for 
this norm, L-1

g
exists).

Other useful norms:

• L
n 
norms: 

• L
∞

norm:

The “L
1
” norm is less sensitive to outliers 

(i.e., anomalous errors), and therefore also 
often preferred:
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L
1
-norm inversion

Solutions minimizing L
1

and similar 
norms are derived from L

2
by iterative 

reweighting:

1) Use the least-squares inverse to 
minimize

2) Apply weights based on current data 

errors:

• The misfit then approximates e
L1

:

3)Iterate to converge to L1 solution 

( )
2

observed

2
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N

L i i
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2 1
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L i i i i i L

i= i=

ε = W t t t t ε−  − = 


