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Mathematical principles

Rotations

Tensors, eigenvectors

Wave equation

Principle of superposition

Boundary conditions

Reading:

➢ Telford et al., Sections A.2-3, A.5, A.7

➢ Shearer, 2.1-2.2, 11.2, Appendix 2
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Rotation (vector)

When axes are rotated, the projections are 
transformed via an axes rotation matrix R:

xx xy xz

yx yy yz

zx zy zz

x' R R R x

y' R R R y

z' R R R z

    
    

=     
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Two dimensional (2D) 
rotation

Exercise: Derive the transformation for a 
counter-clockwise axes rotation by angle a:

cos sin

sin cos

x' α α x x

y' α α y y

       
= =      

−       
R

Note that the matrix is anti-symmetric

What is the matrix R-1 of the inverse 
transformation?

x

y

x'

y'

a

a
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Rotation (tensor)

◼ Tensor is a bi-directional quantity:

◼ Examples: Stress and strain in an elastic 
body; any operator transforming one vector 

(say, a; ) into another (b);

◼ Represented by a matrix:

• 33 in three-dimensional space, 22 in 
two dimensions, etc. 

• Transformed whenever the frame of 
reference is rotated:

3

1

i ij j ij j

j=

b T a T a= 

Summation is assumed 

for repeated index (j) 
(Einstein's notation)

1

ij ik jm km

k,m

T = R R T− 
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Quadratic form

◼ Tensor T can also be represented by its 

quadratic form F (function of an arbitrary 
vector x):

◼ This is a scalar quantity – independent of 
rotations of coordinate systems

◼ Surface of F(x) = const describes the general 
properties of this form

◼ Ellipsoidal shape (finite dimensions)

◼ Hyperboloidal (infinite)

◼ Conical (intermediate)

◼ Principal axes (axes and planes of symmetry)

( ) T

i ij jx T xF = x x Tx

Dot product of x and Tx
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Principal directions

◼ Principal directions are obtained as 
eigenvectors e

i
of the tensor matrix:

( )det 0iλ =−T I

i i iλ=Te e

◼ Eigenvalues l
i
are solved for from the 

following determinant vanishing:

Usually take |e
i
| = 1 

◼ Because for stress and strain tensors, the 
matrix is real and symmetric, all three 
eigenvalues are real

◼ The corresponding e
i
give the principal 

directions (of stress or strain)

◼ li < 0 – compression, li > 0 – tension

◼ When rotated to the directions of ei, the 

tensor becomes diagonal (zero shear stress or 
strain)
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Waves

In seismology, WAVES are stable spatial field 
patterns, which may be: 

Standing:

Propagating with time:

( )
1

u = f ± ctr
r

Spherical wave

f() is the waveform, 

at time t, its zero is at x = ct

Plane wave propagating 
along direction vector n.

( )u f ct= rn

( )
1

u f ρ± ct
ρ

=
Cylindrical wave 
(r is the distance 
from axis)

The argument of f() is called phase

( ) ( )cos n nu ω t f= r
These are commonly 
harmonic, with specific w

n

and f
n

for wavemode n
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Wave equation and 
the principle of superposition

◼ Wave equation:

◼ Note that the wave equation is linear: if u
1
(r,t)

and u
2
(r,t) are its solutions then u

1
(r,t) + u

2
(r,t)

is also a solution.

This property is known as the principle of 
superposition.

Because of it, the total wavefield can always be 
decomposed into field generated by 
elementary sources:

Point sources     – spherical waves;

Linear sources   – cylindrical waves;

Planar sources   – plane waves.

( )
2

2

2 2

1 u
u source r,t

c t


− =


Scalar

( )
2

2

2 2

1
= source ,t .

c t


−



u
u r Vector

In a homogeneous 
velocity field
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Boundary conditions

◼ Boundaries (sharp contrasts) in the velocity field c(r)

result in secondary sources that produce reflected, 
converted, or scattered waves.

◼ The amplitudes of these sources and waves are 
determined through the appropriate boundary 
conditions

e.g., zero displacement at a rigid boundary 
(kinematic boundary condition);

...or zero force at a free boundary (dynamic
boundary condition).

Sources
Velocity, c(r)

Boundary conditions

Three factors determining the wave field 


